ML Anthology
Authors
Search
About
Zemel, Richard S.
68 publications
NeurIPS
2023
Distribution-Free Statistical Dispersion Control for Societal Applications
Zhun Deng
,
Thomas Zollo
,
Jake Snell
,
Toniann Pitassi
,
Richard S. Zemel
NeurIPS
2022
Deep Ensembles Work, but Are They Necessary?
Taiga Abe
,
Estefany Kelly Buchanan
,
Geoff Pleiss
,
Richard S. Zemel
,
John P. Cunningham
NeurIPS
2022
Implications of Model Indeterminacy for Explanations of Automated Decisions
Marc-Etienne Brunet
,
Ashton Anderson
,
Richard S. Zemel
NeurIPS
2021
Identifying and Benchmarking Natural Out-of-Context Prediction Problems
David Madras
,
Richard S. Zemel
NeurIPS
2021
Variational Model Inversion Attacks
Kuan-Chieh Wang
,
Yan Fu
,
Ke Li
,
Ashish Khisti
,
Richard S. Zemel
,
Alireza Makhzani
ICMLW
2020
Wandering Within a World: Online Contextualized Few-Shot Learning
Mengye Ren
,
Michael L. Iuzzolino
,
Michael C. Mozer
,
Richard S. Zemel
ICLR
2019
Dimensionality Reduction for Representing the Knowledge of Probabilistic Models
Marc T Law
,
Jake Snell
,
Amir-massoud Farahmand
,
Raquel Urtasun
,
Richard S Zemel
ICLR
2018
Meta-Learning for Semi-Supervised Few-Shot Classification
Mengye Ren
,
Eleni Triantafillou
,
Sachin Ravi
,
Jake Snell
,
Kevin Swersky
,
Joshua B. Tenenbaum
,
Hugo Larochelle
,
Richard S. Zemel
ICML
2017
Deep Spectral Clustering Learning
Marc T. Law
,
Raquel Urtasun
,
Richard S. Zemel
CVPR
2017
Efficient Multiple Instance Metric Learning Using Weakly Supervised Data
Marc T. Law
,
Yaoliang Yu
,
Raquel Urtasun
,
Richard S. Zemel
,
Eric P. Xing
CVPR
2017
End-to-End Instance Segmentation with Recurrent Attention
Mengye Ren
,
Richard S. Zemel
ICLR
2017
Joint Embeddings of Scene Graphs and Images
Eugene Belilovsky
,
Matthew B. Blaschko
,
Jamie Ryan Kiros
,
Raquel Urtasun
,
Richard S. Zemel
ICLR
2017
Normalizing the Normalizers: Comparing and Extending Network Normalization Schemes
Mengye Ren
,
Renjie Liao
,
Raquel Urtasun
,
Fabian H. Sinz
,
Richard S. Zemel
UAI
2017
Stochastic Segmentation Trees for Multiple Ground Truths
Jake Snell
,
Richard S. Zemel
ICLR
2016
Gated Graph Sequence Neural Networks
Yujia Li
,
Daniel Tarlow
,
Marc Brockschmidt
,
Richard S. Zemel
ICLR
2016
The Variational Fair Autoencoder
Christos Louizos
,
Kevin Swersky
,
Yujia Li
,
Max Welling
,
Richard S. Zemel
JMLR
2014
New Learning Methods for Supervised and Unsupervised Preference Aggregation
Maksims N. Volkovs
,
Richard S. Zemel
ICML
2012
Active Learning for Matching Problems
Laurent Charlin
,
Richard S. Zemel
,
Craig Boutilier
NeurIPS
2012
Cardinality Restricted Boltzmann Machines
Kevin Swersky
,
Ilya Sutskever
,
Daniel Tarlow
,
Richard S. Zemel
,
Ruslan Salakhutdinov
,
Ryan P. Adams
NeurIPS
2012
Collaborative Ranking with 17 Parameters
Maksims Volkovs
,
Richard S. Zemel
NeurIPS
2012
Efficient Sampling for Bipartite Matching Problems
Maksims Volkovs
,
Richard S. Zemel
UAI
2012
Fast Exact Inference for Recursive Cardinality Models
Daniel Tarlow
,
Kevin Swersky
,
Richard S. Zemel
,
Ryan Prescott Adams
,
Brendan J. Frey
NeurIPS
2012
Probabilistic N-Choose-K Models for Classification and Ranking
Kevin Swersky
,
Brendan J. Frey
,
Daniel Tarlow
,
Richard S. Zemel
,
Ryan P. Adams
UAI
2011
A Framework for Optimizing Paper Matching
Laurent Charlin
,
Richard S. Zemel
,
Craig Boutilier
UAI
2011
Graph Cuts Is a Max-Product Algorithm
Daniel Tarlow
,
Inmar E. Givoni
,
Richard S. Zemel
,
Brendan J. Frey
IJCAI
2011
Recommender Systems, Missing Data and Statistical Model Estimation
Benjamin M. Marlin
,
Richard S. Zemel
,
Sam T. Roweis
,
Malcolm Slaney
ICML
2009
BoltzRank: Learning to Maximize Expected Ranking Gain
Maksims Volkovs
,
Richard S. Zemel
NeurIPS
2008
Characterizing Response Behavior in Multisensory Perception with Conflicting Cues
Rama Natarajan
,
Iain Murray
,
Ladan Shams
,
Richard S. Zemel
UAI
2008
Flexible Priors for Exemplar-Based Clustering
Daniel Tarlow
,
Richard S. Zemel
,
Brendan J. Frey
NeurIPS
2008
Generative Versus Discriminative Training of RBMs for Classification of fMRI Images
Tanya Schmah
,
Geoffrey E. Hinton
,
Steven L. Small
,
Stephen Strother
,
Richard S. Zemel
CVPR
2008
Latent Topic Random Fields: Learning Using a Taxonomy of Labels
Xuming He
,
Richard S. Zemel
NeurIPS
2008
Learning Hybrid Models for Image Annotation with Partially Labeled Data
Xuming He
,
Richard S. Zemel
CVPR
2008
Learning Stick-Figure Models Using Nonparametric Bayesian Priors over Trees
Edward Meeds
,
David A. Ross
,
Richard S. Zemel
,
Sam T. Roweis
ECCV
2008
Unsupervised Learning of Skeletons from Motion
David A. Ross
,
Daniel Tarlow
,
Richard S. Zemel
UAI
2007
Collaborative Filtering and the Missing at Random Assumption
Benjamin M. Marlin
,
Richard S. Zemel
,
Sam T. Roweis
,
Malcolm Slaney
ICML
2006
Combining Discriminative Features to Infer Complex Trajectories
David A. Ross
,
Simon Osindero
,
Richard S. Zemel
JMLR
2006
Learning Parts-Based Representations of Data
David A. Ross
,
Richard S. Zemel
ECCV
2006
Learning and Incorporating Top-Down Cues in Image Segmentation
Xuming He
,
Richard S. Zemel
,
Debajyoti Ray
AISTATS
2005
Unsupervised Learning with Non-Ignorable Missing Data
Benjamin M. Marlin
,
Sam T. Roweis
,
Richard S. Zemel
CVPR
2004
Multiscale Conditional Random Fields for Image Labeling
Xuming He
,
Richard S. Zemel
,
Miguel Á. Carreira-Perpiñán
NeurIPS
2004
Probabilistic Computation in Spiking Populations
Richard S. Zemel
,
Rama Natarajan
,
Peter Dayan
,
Quentin J. Huys
NeurIPS
2004
Proximity Graphs for Clustering and Manifold Learning
Richard S. Zemel
,
Miguel Á. Carreira-Perpiñán
ICML
2004
The Multiple Multiplicative Factor Model for Collaborative Filtering
Benjamin M. Marlin
,
Richard S. Zemel
UAI
2003
Active Collaborative Filtering
Craig Boutilier
,
Richard S. Zemel
,
Benjamin M. Marlin
AISTATS
2003
An Active Approach to Collaborative Filtering
Richard S. Zemel
,
Craig Boutilier
UAI
2003
Efficient Parametric Projection Pursuit Density Estimation
Max Welling
,
Richard S. Zemel
,
Geoffrey E. Hinton
NeurIPS
2002
Multiple Cause Vector Quantization
David A. Ross
,
Richard S. Zemel
NeurIPS
2002
Self Supervised Boosting
Max Welling
,
Richard S. Zemel
,
Geoffrey E. Hinton
NeCo
2001
Localist Attractor Networks
Richard S. Zemel
,
Michael Mozer
NeurIPS
2000
A Gradient-Based Boosting Algorithm for Regression Problems
Richard S. Zemel
,
Toniann Pitassi
NeurIPS
1999
A Generative Model for Attractor Dynamics
Richard S. Zemel
,
Michael Mozer
NeurIPS
1999
Managing Uncertainty in Cue Combination
Zhiyong Yang
,
Richard S. Zemel
NeurIPS
1998
Distributional Population Codes and Multiple Motion Models
Richard S. Zemel
,
Peter Dayan
NeCo
1998
Probabilistic Interpretation of Population Codes
Richard S. Zemel
,
Peter Dayan
,
Alexandre Pouget
IJCAI
1997
Combining Probabilistic Population Codes
Richard S. Zemel
,
Peter Dayan
NeurIPS
1996
Probabilistic Interpretation of Population Codes
Richard S. Zemel
,
Peter Dayan
,
Alexandre Pouget
NeurIPS
1996
Selective Integration: A Model for Disparity Estimation
Michael S. Gray
,
Alexandre Pouget
,
Richard S. Zemel
,
Steven J. Nowlan
,
Terrence J. Sejnowski
NeCo
1995
Competition and Multiple Cause Models
Peter Dayan
,
Richard S. Zemel
NeCo
1995
Learning Population Codes by Minimizing Description Length
Richard S. Zemel
,
Geoffrey E. Hinton
NeCo
1995
The Helmholtz Machine
Peter Dayan
,
Geoffrey E. Hinton
,
Radford M. Neal
,
Richard S. Zemel
NeurIPS
1994
Grouping Components of Three-Dimensional Moving Objects in Area MST of Visual Cortex
Richard S. Zemel
,
Terrence J. Sejnowski
NeurIPS
1993
Autoencoders, Minimum Description Length and Helmholtz Free Energy
Geoffrey E. Hinton
,
Richard S. Zemel
NeurIPS
1993
Developing Population Codes by Minimizing Description Length
Richard S. Zemel
,
Geoffrey E. Hinton
NeurIPS
1992
Directional-Unit Boltzmann Machines
Richard S. Zemel
,
Christopher K. I. Williams
,
Michael Mozer
NeCo
1992
Learning to Segment Images Using Dynamic Feature Binding
Michael C. Mozer
,
Richard S. Zemel
,
Marlene Behrmann
,
Christopher K. I. Williams
NeurIPS
1991
Learning to Segment Images Using Dynamic Feature Binding
Michael Mozer
,
Richard S. Zemel
,
Marlene Behrmann
NeurIPS
1990
Discovering Viewpoint-Invariant Relationships That Characterize Objects
Richard S. Zemel
,
Geoffrey E. Hinton
NeurIPS
1989
TRAFFIC: Recognizing Objects Using Hierarchical Reference Frame Transformations
Richard S. Zemel
,
Michael Mozer
,
Geoffrey E. Hinton