Zemel, Richard S.

68 publications

NeurIPS 2023 Distribution-Free Statistical Dispersion Control for Societal Applications Zhun Deng, Thomas Zollo, Jake Snell, Toniann Pitassi, Richard S. Zemel
NeurIPS 2022 Deep Ensembles Work, but Are They Necessary? Taiga Abe, Estefany Kelly Buchanan, Geoff Pleiss, Richard S. Zemel, John P. Cunningham
NeurIPS 2022 Implications of Model Indeterminacy for Explanations of Automated Decisions Marc-Etienne Brunet, Ashton Anderson, Richard S. Zemel
NeurIPS 2021 Identifying and Benchmarking Natural Out-of-Context Prediction Problems David Madras, Richard S. Zemel
NeurIPS 2021 Variational Model Inversion Attacks Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard S. Zemel, Alireza Makhzani
ICMLW 2020 Wandering Within a World: Online Contextualized Few-Shot Learning Mengye Ren, Michael L. Iuzzolino, Michael C. Mozer, Richard S. Zemel
ICLR 2019 Dimensionality Reduction for Representing the Knowledge of Probabilistic Models Marc T Law, Jake Snell, Amir-massoud Farahmand, Raquel Urtasun, Richard S Zemel
ICLR 2018 Meta-Learning for Semi-Supervised Few-Shot Classification Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B. Tenenbaum, Hugo Larochelle, Richard S. Zemel
ICML 2017 Deep Spectral Clustering Learning Marc T. Law, Raquel Urtasun, Richard S. Zemel
CVPR 2017 Efficient Multiple Instance Metric Learning Using Weakly Supervised Data Marc T. Law, Yaoliang Yu, Raquel Urtasun, Richard S. Zemel, Eric P. Xing
CVPR 2017 End-to-End Instance Segmentation with Recurrent Attention Mengye Ren, Richard S. Zemel
ICLR 2017 Joint Embeddings of Scene Graphs and Images Eugene Belilovsky, Matthew B. Blaschko, Jamie Ryan Kiros, Raquel Urtasun, Richard S. Zemel
ICLR 2017 Normalizing the Normalizers: Comparing and Extending Network Normalization Schemes Mengye Ren, Renjie Liao, Raquel Urtasun, Fabian H. Sinz, Richard S. Zemel
UAI 2017 Stochastic Segmentation Trees for Multiple Ground Truths Jake Snell, Richard S. Zemel
ICLR 2016 Gated Graph Sequence Neural Networks Yujia Li, Daniel Tarlow, Marc Brockschmidt, Richard S. Zemel
ICLR 2016 The Variational Fair Autoencoder Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, Richard S. Zemel
JMLR 2014 New Learning Methods for Supervised and Unsupervised Preference Aggregation Maksims N. Volkovs, Richard S. Zemel
ICML 2012 Active Learning for Matching Problems Laurent Charlin, Richard S. Zemel, Craig Boutilier
NeurIPS 2012 Cardinality Restricted Boltzmann Machines Kevin Swersky, Ilya Sutskever, Daniel Tarlow, Richard S. Zemel, Ruslan Salakhutdinov, Ryan P. Adams
NeurIPS 2012 Collaborative Ranking with 17 Parameters Maksims Volkovs, Richard S. Zemel
NeurIPS 2012 Efficient Sampling for Bipartite Matching Problems Maksims Volkovs, Richard S. Zemel
UAI 2012 Fast Exact Inference for Recursive Cardinality Models Daniel Tarlow, Kevin Swersky, Richard S. Zemel, Ryan Prescott Adams, Brendan J. Frey
NeurIPS 2012 Probabilistic N-Choose-K Models for Classification and Ranking Kevin Swersky, Brendan J. Frey, Daniel Tarlow, Richard S. Zemel, Ryan P. Adams
UAI 2011 A Framework for Optimizing Paper Matching Laurent Charlin, Richard S. Zemel, Craig Boutilier
UAI 2011 Graph Cuts Is a Max-Product Algorithm Daniel Tarlow, Inmar E. Givoni, Richard S. Zemel, Brendan J. Frey
IJCAI 2011 Recommender Systems, Missing Data and Statistical Model Estimation Benjamin M. Marlin, Richard S. Zemel, Sam T. Roweis, Malcolm Slaney
ICML 2009 BoltzRank: Learning to Maximize Expected Ranking Gain Maksims Volkovs, Richard S. Zemel
NeurIPS 2008 Characterizing Response Behavior in Multisensory Perception with Conflicting Cues Rama Natarajan, Iain Murray, Ladan Shams, Richard S. Zemel
UAI 2008 Flexible Priors for Exemplar-Based Clustering Daniel Tarlow, Richard S. Zemel, Brendan J. Frey
NeurIPS 2008 Generative Versus Discriminative Training of RBMs for Classification of fMRI Images Tanya Schmah, Geoffrey E. Hinton, Steven L. Small, Stephen Strother, Richard S. Zemel
CVPR 2008 Latent Topic Random Fields: Learning Using a Taxonomy of Labels Xuming He, Richard S. Zemel
NeurIPS 2008 Learning Hybrid Models for Image Annotation with Partially Labeled Data Xuming He, Richard S. Zemel
CVPR 2008 Learning Stick-Figure Models Using Nonparametric Bayesian Priors over Trees Edward Meeds, David A. Ross, Richard S. Zemel, Sam T. Roweis
ECCV 2008 Unsupervised Learning of Skeletons from Motion David A. Ross, Daniel Tarlow, Richard S. Zemel
UAI 2007 Collaborative Filtering and the Missing at Random Assumption Benjamin M. Marlin, Richard S. Zemel, Sam T. Roweis, Malcolm Slaney
ICML 2006 Combining Discriminative Features to Infer Complex Trajectories David A. Ross, Simon Osindero, Richard S. Zemel
JMLR 2006 Learning Parts-Based Representations of Data David A. Ross, Richard S. Zemel
ECCV 2006 Learning and Incorporating Top-Down Cues in Image Segmentation Xuming He, Richard S. Zemel, Debajyoti Ray
AISTATS 2005 Unsupervised Learning with Non-Ignorable Missing Data Benjamin M. Marlin, Sam T. Roweis, Richard S. Zemel
CVPR 2004 Multiscale Conditional Random Fields for Image Labeling Xuming He, Richard S. Zemel, Miguel Á. Carreira-Perpiñán
NeurIPS 2004 Probabilistic Computation in Spiking Populations Richard S. Zemel, Rama Natarajan, Peter Dayan, Quentin J. Huys
NeurIPS 2004 Proximity Graphs for Clustering and Manifold Learning Richard S. Zemel, Miguel Á. Carreira-Perpiñán
ICML 2004 The Multiple Multiplicative Factor Model for Collaborative Filtering Benjamin M. Marlin, Richard S. Zemel
UAI 2003 Active Collaborative Filtering Craig Boutilier, Richard S. Zemel, Benjamin M. Marlin
AISTATS 2003 An Active Approach to Collaborative Filtering Richard S. Zemel, Craig Boutilier
UAI 2003 Efficient Parametric Projection Pursuit Density Estimation Max Welling, Richard S. Zemel, Geoffrey E. Hinton
NeurIPS 2002 Multiple Cause Vector Quantization David A. Ross, Richard S. Zemel
NeurIPS 2002 Self Supervised Boosting Max Welling, Richard S. Zemel, Geoffrey E. Hinton
NeCo 2001 Localist Attractor Networks Richard S. Zemel, Michael Mozer
NeurIPS 2000 A Gradient-Based Boosting Algorithm for Regression Problems Richard S. Zemel, Toniann Pitassi
NeurIPS 1999 A Generative Model for Attractor Dynamics Richard S. Zemel, Michael Mozer
NeurIPS 1999 Managing Uncertainty in Cue Combination Zhiyong Yang, Richard S. Zemel
NeurIPS 1998 Distributional Population Codes and Multiple Motion Models Richard S. Zemel, Peter Dayan
NeCo 1998 Probabilistic Interpretation of Population Codes Richard S. Zemel, Peter Dayan, Alexandre Pouget
IJCAI 1997 Combining Probabilistic Population Codes Richard S. Zemel, Peter Dayan
NeurIPS 1996 Probabilistic Interpretation of Population Codes Richard S. Zemel, Peter Dayan, Alexandre Pouget
NeurIPS 1996 Selective Integration: A Model for Disparity Estimation Michael S. Gray, Alexandre Pouget, Richard S. Zemel, Steven J. Nowlan, Terrence J. Sejnowski
NeCo 1995 Competition and Multiple Cause Models Peter Dayan, Richard S. Zemel
NeCo 1995 Learning Population Codes by Minimizing Description Length Richard S. Zemel, Geoffrey E. Hinton
NeCo 1995 The Helmholtz Machine Peter Dayan, Geoffrey E. Hinton, Radford M. Neal, Richard S. Zemel
NeurIPS 1994 Grouping Components of Three-Dimensional Moving Objects in Area MST of Visual Cortex Richard S. Zemel, Terrence J. Sejnowski
NeurIPS 1993 Autoencoders, Minimum Description Length and Helmholtz Free Energy Geoffrey E. Hinton, Richard S. Zemel
NeurIPS 1993 Developing Population Codes by Minimizing Description Length Richard S. Zemel, Geoffrey E. Hinton
NeurIPS 1992 Directional-Unit Boltzmann Machines Richard S. Zemel, Christopher K. I. Williams, Michael Mozer
NeCo 1992 Learning to Segment Images Using Dynamic Feature Binding Michael C. Mozer, Richard S. Zemel, Marlene Behrmann, Christopher K. I. Williams
NeurIPS 1991 Learning to Segment Images Using Dynamic Feature Binding Michael Mozer, Richard S. Zemel, Marlene Behrmann
NeurIPS 1990 Discovering Viewpoint-Invariant Relationships That Characterize Objects Richard S. Zemel, Geoffrey E. Hinton
NeurIPS 1989 TRAFFIC: Recognizing Objects Using Hierarchical Reference Frame Transformations Richard S. Zemel, Michael Mozer, Geoffrey E. Hinton