ML Anthology
Authors
Search
About
Zhang, Yehong
11 publications
TMLR
2024
Dependency Structure Search Bayesian Optimization for Decision Making Models
Mohit Rajpal
,
Lac Gia Tran
,
Yehong Zhang
,
Bryan Kian Hsiang Low
AAAI
2024
EncryIP: A Practical Encryption-Based Framework for Model Intellectual Property Protection
Xin Mu
,
Yu Wang
,
Zhengan Huang
,
Junzuo Lai
,
Yehong Zhang
,
Hui Wang
,
Yue Yu
IJCAI
2024
Meta-Learning via PAC-Bayesian with Data-Dependent Prior: Generalization Bounds from Local Entropy
Shiyu Liu
,
Wei Shi
,
Zenglin Xu
,
Shaogao Lv
,
Yehong Zhang
,
Hui Wang
NeurIPS
2023
Incentives in Private Collaborative Machine Learning
Rachael Sim
,
Yehong Zhang
,
Nghia Hoang
,
Xinyi Xu
,
Bryan Kian Hsiang Low
,
Patrick Jaillet
UAI
2023
Practical Privacy-Preserving Gaussian Process Regression via Secret Sharing
Jinglong Luo
,
Yehong Zhang
,
Jiaqi Zhang
,
Shuang Qin
,
Hui Wang
,
Yue Yu
,
Zenglin Xu
MLJ
2023
Pruning During Training by Network Efficacy Modeling
Mohit Rajpal
,
Yehong Zhang
,
Bryan Kian Hsiang Low
ICML
2021
Collaborative Bayesian Optimization with Fair Regret
Rachael Hwee Ling Sim
,
Yehong Zhang
,
Bryan Kian Hsiang Low
,
Patrick Jaillet
ICML
2020
Collaborative Machine Learning with Incentive-Aware Model Rewards
Rachael Hwee Ling Sim
,
Yehong Zhang
,
Mun Choon Chan
,
Bryan Kian Hsiang Low
AAAI
2020
Scalable Variational Bayesian Kernel Selection for Sparse Gaussian Process Regression
Tong Teng
,
Jie Chen
,
Yehong Zhang
,
Bryan Kian Hsiang Low
UAI
2019
Bayesian Optimization with Binary Auxiliary Information
Yehong Zhang
,
Zhongxiang Dai
,
Bryan Kian Hsiang Low
AAAI
2016
Near-Optimal Active Learning of Multi-Output Gaussian Processes
Yehong Zhang
,
Trong Nghia Hoang
,
Kian Hsiang Low
,
Mohan S. Kankanhalli