Zhang, Yuchen

39 publications

TMLR 2026 Toward Efficient Influence Function: Dropout as a Compression Tool Yuchen Zhang, Mohammad Mohammadi Amiri
ICML 2025 Inverse Flow and Consistency Models Yuchen Zhang, Jian Zhou
AAAI 2025 Learning Complex Heterogeneous Multimodal Fake News via Social Latent Network Inference Mingxin Li, Yuchen Zhang, Haowei Xu, Xianghua Li, Chao Gao, Zhen Wang
NeurIPS 2025 Loquetier: A Virtualized Multi-LoRA Framework for Unified LLM Fine-Tuning and Serving Yuchen Zhang, Hanyue Du, Chun Cao, Jingwei Xu
NeurIPS 2025 TTRL: Test-Time Reinforcement Learning Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen Zhang, Xinwei Long, Ermo Hua, Biqing Qi, Youbang Sun, Zhiyuan Ma, Lifan Yuan, Ning Ding, Bowen Zhou
ICLRW 2025 Toward Efficient Influence Function: Dropout as a Compression Tool Yuchen Zhang, Mohammad Mohammadi Amiri
NeurIPS 2025 UFM: A Simple Path Towards Unified Dense Correspondence with Flow Yuchen Zhang, Nikhil Varma Keetha, Chenwei Lyu, Bhuvan Jhamb, Yutian Chen, Yuheng Qiu, Jay Karhade, Shreyas Jha, Yaoyu Hu, Deva Ramanan, Sebastian Scherer, Wenshan Wang
NeurIPS 2024 AGILE: A Novel Reinforcement Learning Framework of LLM Agents Peiyuan Feng, Yichen He, Guanhua Huang, Yuan Lin, Hanchong Zhang, Yuchen Zhang, Hang Li
ECCV 2024 AutoEval-Video: An Automatic Benchmark for Assessing Large Vision Language Models in Open-Ended Video Question Answering Xiuyuan Chen, Yuan Lin, Yuchen Zhang, Weiran Huang
ICML 2024 Boximator: Generating Rich and Controllable Motions for Video Synthesis Jiawei Wang, Yuchen Zhang, Jiaxin Zou, Yan Zeng, Guoqiang Wei, Liping Yuan, Hang Li
NeurIPS 2024 GDeR: Safeguarding Efficiency, Balancing, and Robustness via Prototypical Graph Pruning Guibin Zhang, Haonan Dong, Yuchen Zhang, Zhixun Li, Dingshuo Chen, Kai Wang, Tianlong Chen, Yuxuan Liang, Dawei Cheng, Kun Wang
CVPR 2024 Make Pixels Dance: High-Dynamic Video Generation Yan Zeng, Guoqiang Wei, Jiani Zheng, Jiaxin Zou, Yang Wei, Yuchen Zhang, Hang Li
ICML 2024 Navigating Complexity: Toward Lossless Graph Condensation via Expanding Window Matching Yuchen Zhang, Tianle Zhang, Kai Wang, Ziyao Guo, Yuxuan Liang, Xavier Bresson, Wei Jin, Yang You
NeurIPS 2024 Rethinking Human Evaluation Protocol for Text-to-Video Models: Enhancing Reliability, Reproducibility, and Practicality Tianle Zhang, Langtian Ma, Yuchen Yan, Yuchen Zhang, Kai Wang, Yue Yang, Ziyao Guo, Wenqi Shao, Yang You, Yu Qiao, Ping Luo, Kaipeng Zhang
ICMLW 2024 Self-Control of LLM Behaviors by Compressing Suffix Gradient into Prefix Controller Min Cai, Yuchen Zhang, Shichang Zhang, Fan Yin, Difan Zou, Yisong Yue, Ziniu Hu
ICMLW 2024 Self-Control of LLM Behaviors by Compressing Suffix Gradient into Prefix Controller Min Cai, Yuchen Zhang, Shichang Zhang, Fan Yin, Difan Zou, Yisong Yue, Ziniu Hu
NeurIPS 2023 Enhancing Knowledge Transfer for Task Incremental Learning with Data-Free Subnetwork Qiang Gao, Xiaojun Shan, Yuchen Zhang, Fan Zhou
ICML 2023 Estimating Heterogeneous Treatment Effects: Mutual Information Bounds and Learning Algorithms Xingzhuo Guo, Yuchen Zhang, Jianmin Wang, Mingsheng Long
NeurIPSW 2021 Vision-Guided Quadrupedal Locomotion in the Wild with Multi-Modal Delay Randomization Chieko Sarah Imai, Minghao Zhang, Yuchen Zhang, Marcin KierebiƄski, Ruihan Yang, Yuzhe Qin, Xiaolong Wang
ICML 2019 Bridging Theory and Algorithm for Domain Adaptation Yuchen Zhang, Tianle Liu, Mingsheng Long, Michael Jordan
AISTATS 2019 Defending Against Whitebox Adversarial Attacks via Randomized Discretization Yuchen Zhang, Percy Liang
COLT 2017 A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics Yuchen Zhang, Percy Liang, Moses Charikar
ICML 2017 Convexified Convolutional Neural Networks Yuchen Zhang, Percy Liang, Martin J. Wainwright
AISTATS 2017 On the Learnability of Fully-Connected Neural Networks Yuchen Zhang, Jason D. Lee, Martin J. Wainwright, Michael I. Jordan
JMLR 2017 Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization Yuchen Zhang, Lin Xiao
ICML 2016 L1-Regularized Neural Networks Are Improperly Learnable in Polynomial Time Yuchen Zhang, Jason D. Lee, Michael I. Jordan
NeurIPS 2016 Local Maxima in the Likelihood of Gaussian Mixture Models: Structural Results and Algorithmic Consequences Chi Jin, Yuchen Zhang, Sivaraman Balakrishnan, Martin J. Wainwright, Michael I Jordan
JMLR 2016 On Bayes Risk Lower Bounds Xi Chen, Adityanand Guntuboyina, Yuchen Zhang
JMLR 2016 Spectral Methods Meet EM: A Provably Optimal Algorithm for Crowdsourcing Yuchen Zhang, Xi Chen, Dengyong Zhou, Michael I. Jordan
ICML 2015 DiSCO: Distributed Optimization for Self-Concordant Empirical Loss Yuchen Zhang, Xiao Lin
ICML 2015 Distributed Estimation of Generalized Matrix Rank: Efficient Algorithms and Lower Bounds Yuchen Zhang, Martin Wainwright, Michael Jordan
JMLR 2015 Divide and Conquer Kernel Ridge Regression: A Distributed Algorithm with Minimax Optimal Rates Yuchen Zhang, John Duchi, Martin Wainwright
ICML 2015 Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization Yuchen Zhang, Xiao Lin
COLT 2014 Lower Bounds on the Performance of Polynomial-Time Algorithms for Sparse Linear Regression Yuchen Zhang, Martin J. Wainwright, Michael I. Jordan
NeurIPS 2014 Spectral Methods Meet EM: A Provably Optimal Algorithm for Crowdsourcing Yuchen Zhang, Xi Chen, Dengyong Zhou, Michael I Jordan
JMLR 2013 Communication-Efficient Algorithms for Statistical Optimization Yuchen Zhang, John C. Duchi, Martin J. Wainwright
COLT 2013 Divide and Conquer Kernel Ridge Regression Yuchen Zhang, John C. Duchi, Martin J. Wainwright
NeurIPS 2013 Information-Theoretic Lower Bounds for Distributed Statistical Estimation with Communication Constraints Yuchen Zhang, John Duchi, Michael I Jordan, Martin J. Wainwright
NeurIPS 2012 Communication-Efficient Algorithms for Statistical Optimization Yuchen Zhang, Martin J. Wainwright, John C. Duchi