ML Anthology
Authors
Search
About
Zhao, Shengjia
27 publications
ICLR
2022
Comparing Distributions by Measuring Differences That Affect Decision Making
Shengjia Zhao
,
Abhishek Sinha
,
Yutong He
,
Aidan Perreault
,
Jiaming Song
,
Stefano Ermon
NeurIPS
2022
Generalizing Bayesian Optimization with Decision-Theoretic Entropies
Willie Neiswanger
,
Lantao Yu
,
Shengjia Zhao
,
Chenlin Meng
,
Stefano Ermon
UAI
2022
Local Calibration: Metrics and Recalibration
Rachel Luo
,
Aadyot Bhatnagar
,
Yu Bai
,
Shengjia Zhao
,
Huan Wang
,
Caiming Xiong
,
Silvio Savarese
,
Stefano Ermon
,
Edward Schmerling
,
Marco Pavone
COLT
2022
Low-Degree Multicalibration
Parikshit Gopalan
,
Michael P Kim
,
Mihir A Singhal
,
Shengjia Zhao
ICML
2022
Modular Conformal Calibration
Charles Marx
,
Shengjia Zhao
,
Willie Neiswanger
,
Stefano Ermon
AISTATS
2021
Right Decisions from Wrong Predictions: A Mechanism Design Alternative to Individual Calibration
Shengjia Zhao
,
Stefano Ermon
NeurIPS
2021
Calibrating Predictions to Decisions: A Novel Approach to Multi-Class Calibration
Shengjia Zhao
,
Michael Kim
,
Roshni Sahoo
,
Tengyu Ma
,
Stefano Ermon
ICLR
2021
Improved Autoregressive Modeling with Distribution Smoothing
Chenlin Meng
,
Jiaming Song
,
Yang Song
,
Shengjia Zhao
,
Stefano Ermon
NeurIPS
2021
Reliable Decisions with Threshold Calibration
Roshni Sahoo
,
Shengjia Zhao
,
Alyssa Chen
,
Stefano Ermon
AISTATS
2020
A Framework for Sample Efficient Interval Estimation with Control Variates
Shengjia Zhao
,
Christopher Yeh
,
Stefano Ermon
ICLR
2020
A Theory of Usable Information Under Computational Constraints
Yilun Xu
,
Shengjia Zhao
,
Jiaming Song
,
Russell Stewart
,
Stefano Ermon
ICML
2020
Domain Adaptive Imitation Learning
Kuno Kim
,
Yihong Gu
,
Jiaming Song
,
Shengjia Zhao
,
Stefano Ermon
ICML
2020
Individual Calibration with Randomized Forecasting
Shengjia Zhao
,
Tengyu Ma
,
Stefano Ermon
AISTATS
2020
Permutation Invariant Graph Generation via Score-Based Generative Modeling
Chenhao Niu
,
Yang Song
,
Jiaming Song
,
Shengjia Zhao
,
Aditya Grover
,
Stefano Ermon
ICML
2019
Adaptive Antithetic Sampling for Variance Reduction
Hongyu Ren
,
Shengjia Zhao
,
Stefano Ermon
UAI
2019
Adaptive Hashing for Model Counting
Jonathan Kuck
,
Tri Dao
,
Shengjia Zhao
,
Burak Bartan
,
Ashish Sabharwal
,
Stefano Ermon
AAAI
2019
InfoVAE: Balancing Learning and Inference in Variational Autoencoders
Shengjia Zhao
,
Jiaming Song
,
Stefano Ermon
AISTATS
2019
Learning Controllable Fair Representations
Jiaming Song
,
Pratyusha Kalluri
,
Aditya Grover
,
Shengjia Zhao
,
Stefano Ermon
ICLR
2019
Learning Neural PDE Solvers with Convergence Guarantees
Jun-Ting Hsieh
,
Shengjia Zhao
,
Stephan Eismann
,
Lucia Mirabella
,
Stefano Ermon
UAI
2018
A Lagrangian Perspective on Latent Variable Generative Models
Shengjia Zhao
,
Jiaming Song
,
Stefano Ermon
NeurIPS
2018
Amortized Inference Regularization
Rui Shu
,
Hung H Bui
,
Shengjia Zhao
,
Mykel J Kochenderfer
,
Stefano Ermon
NeurIPS
2018
Bias and Generalization in Deep Generative Models: An Empirical Study
Shengjia Zhao
,
Hongyu Ren
,
Arianna Yuan
,
Jiaming Song
,
Noah Goodman
,
Stefano Ermon
NeurIPS
2017
A-NICE-MC: Adversarial Training for MCMC
Jiaming Song
,
Shengjia Zhao
,
Stefano Ermon
ICLR
2017
Generative Adversarial Learning of Markov Chains
Jiaming Song
,
Shengjia Zhao
,
Stefano Ermon
ICML
2017
Learning Hierarchical Features from Deep Generative Models
Shengjia Zhao
,
Jiaming Song
,
Stefano Ermon
NeurIPS
2016
Adaptive Concentration Inequalities for Sequential Decision Problems
Shengjia Zhao
,
Enze Zhou
,
Ashish Sabharwal
,
Stefano Ermon
AAAI
2016
Closing the Gap Between Short and Long XORs for Model Counting
Shengjia Zhao
,
Sorathan Chaturapruek
,
Ashish Sabharwal
,
Stefano Ermon