ML Anthology
Authors
Search
About
Zhou, Dengyong
30 publications
AAAI
2021
Post-Training Quantization with Multiple Points: Mixed Precision Without Mixed Precision
Xingchao Liu
,
Mao Ye
,
Dengyong Zhou
,
Qiang Liu
ICLR
2020
Doubly Robust Bias Reduction in Infinite Horizon Off-Policy Estimation
Ziyang Tang
,
Yihao Feng
,
Lihong Li
,
Dengyong Zhou
,
Qiang Liu
ICLR
2018
Action-Dependent Control Variates for Policy Optimization via Stein Identity
Hao Liu
,
Yihao Feng
,
Yi Mao
,
Dengyong Zhou
,
Jian Peng
,
Qiang Liu
NeurIPS
2018
Breaking the Curse of Horizon: Infinite-Horizon Off-Policy Estimation
Qiang Liu
,
Lihong Li
,
Ziyang Tang
,
Dengyong Zhou
ICLR
2018
On the Discrimination-Generalization Tradeoff in GANs
Pengchuan Zhang
,
Qiang Liu
,
Dengyong Zhou
,
Tao Xu
,
Xiaodong He
ICLR
2018
Towards Neural Phrase-Based Machine Translation
Po-Sen Huang
,
Chong Wang
,
Sitao Huang
,
Dengyong Zhou
,
Li Deng
ICLR
2017
Neuro-Symbolic Program Synthesis
Emilio Parisotto
,
Abdel-rahman Mohamed
,
Rishabh Singh
,
Lihong Li
,
Dengyong Zhou
,
Pushmeet Kohli
ICML
2017
Provably Optimal Algorithms for Generalized Linear Contextual Bandits
Lihong Li
,
Yu Lu
,
Dengyong Zhou
ICML
2017
Sequence Modeling via Segmentations
Chong Wang
,
Yining Wang
,
Po-Sen Huang
,
Abdelrahman Mohamed
,
Dengyong Zhou
,
Li Deng
ICML
2017
Stochastic Variance Reduction Methods for Policy Evaluation
Simon S. Du
,
Jianshu Chen
,
Lihong Li
,
Lin Xiao
,
Dengyong Zhou
JMLR
2016
Double or Nothing: Multiplicative Incentive Mechanisms for Crowdsourcing
Nihar B. Shah
,
Dengyong Zhou
ICML
2016
Exact Exponent in Optimal Rates for Crowdsourcing
Chao Gao
,
Yu Lu
,
Dengyong Zhou
ICML
2016
No Oops, You Won’t Do It Again: Mechanisms for Self-Correction in Crowdsourcing
Nihar Shah
,
Dengyong Zhou
JMLR
2016
Spectral Methods Meet EM: A Provably Optimal Algorithm for Crowdsourcing
Yuchen Zhang
,
Xi Chen
,
Dengyong Zhou
,
Michael I. Jordan
ICML
2015
Approval Voting and Incentives in Crowdsourcing
Nihar Shah
,
Dengyong Zhou
,
Yuval Peres
NeurIPS
2015
Double or Nothing: Multiplicative Incentive Mechanisms for Crowdsourcing
Nihar Bhadresh Shah
,
Dengyong Zhou
AAAI
2015
On the Impossibility of Convex Inference in Human Computation
Nihar B. Shah
,
Dengyong Zhou
JMLR
2015
Statistical Decision Making for Optimal Budget Allocation in Crowd Labeling
Xi Chen
,
Qihang Lin
,
Dengyong Zhou
ICML
2014
Aggregating Ordinal Labels from Crowds by Minimax Conditional Entropy
Dengyong Zhou
,
Qiang Liu
,
John Platt
,
Christopher Meek
NeurIPS
2014
Spectral Methods Meet EM: A Provably Optimal Algorithm for Crowdsourcing
Yuchen Zhang
,
Xi Chen
,
Dengyong Zhou
,
Michael I Jordan
ICML
2013
Optimistic Knowledge Gradient Policy for Optimal Budget Allocation in Crowdsourcing
Xi Chen
,
Qihang Lin
,
Dengyong Zhou
NeurIPS
2012
Learning from the Wisdom of Crowds by Minimax Entropy
Dengyong Zhou
,
Sumit Basu
,
Yi Mao
,
John C. Platt
ICML
2011
Hierarchical Classification via Orthogonal Transfer
Lin Xiao
,
Dengyong Zhou
,
Mingrui Wu
ICML
2007
Spectral Clustering and Transductive Learning with Multiple Views
Dengyong Zhou
,
Christopher J. C. Burges
NeurIPS
2006
Learning with Hypergraphs: Clustering, Classification, and Embedding
Dengyong Zhou
,
Jiayuan Huang
,
Bernhard Schölkopf
ICML
2005
Learning from Labeled and Unlabeled Data on a Directed Graph
Dengyong Zhou
,
Jiayuan Huang
,
Bernhard Schölkopf
NeurIPS
2004
Semi-Supervised Learning on Directed Graphs
Dengyong Zhou
,
Thomas Hofmann
,
Bernhard Schölkopf
NeurIPS
2003
Learning with Local and Global Consistency
Dengyong Zhou
,
Olivier Bousquet
,
Thomas N. Lal
,
Jason Weston
,
Bernhard Schölkopf
NeurIPS
2003
Ranking on Data Manifolds
Dengyong Zhou
,
Jason Weston
,
Arthur Gretton
,
Olivier Bousquet
,
Bernhard Schölkopf
NeurIPS
2003
Semi-Supervised Protein Classification Using Cluster Kernels
Jason Weston
,
Dengyong Zhou
,
André Elisseeff
,
William S. Noble
,
Christina S. Leslie