ML Anthology
Authors
Search
About
Zhou, Ding-Xuan
21 publications
JMLR
2025
Adaptive Distributed Kernel Ridge Regression: A Feasible Distributed Learning Scheme for Data Silos
Shao-Bo Lin
,
Xiaotong Liu
,
Di Wang
,
Hai Zhang
,
Ding-Xuan Zhou
JMLR
2024
Classification with Deep Neural Networks and Logistic Loss
Zihan Zhang
,
Lei Shi
,
Ding-Xuan Zhou
JMLR
2024
Nonparametric Regression Using Over-Parameterized Shallow ReLU Neural Networks
Yunfei Yang
,
Ding-Xuan Zhou
ICML
2023
Generalization Analysis for Contrastive Representation Learning
Yunwen Lei
,
Tianbao Yang
,
Yiming Ying
,
Ding-Xuan Zhou
NeurIPS
2022
Stability and Generalization for Markov Chain Stochastic Gradient Methods
Puyu Wang
,
Yunwen Lei
,
Yiming Ying
,
Ding-Xuan Zhou
JMLR
2021
On ADMM in Deep Learning: Convergence and Saturation-Avoidance
Jinshan Zeng
,
Shao-Bo Lin
,
Yuan Yao
,
Ding-Xuan Zhou
IJCAI
2021
Towards Understanding the Spectral Bias of Deep Learning
Yuan Cao
,
Zhiying Fang
,
Yue Wu
,
Ding-Xuan Zhou
,
Quanquan Gu
JMLR
2020
Distributed Kernel Ridge Regression with Communications
Shao-Bo Lin
,
Di Wang
,
Ding-Xuan Zhou
JMLR
2019
Boosted Kernel Ridge Regression: Optimal Learning Rates and Early Stopping
Shao-Bo Lin
,
Yunwen Lei
,
Ding-Xuan Zhou
NeurIPS
2019
Optimal Stochastic and Online Learning with Individual Iterates
Yunwen Lei
,
Peng Yang
,
Ke Tang
,
Ding-Xuan Zhou
JMLR
2017
Distributed Learning with Regularized Least Squares
Shao-Bo Lin
,
Xin Guo
,
Ding-Xuan Zhou
JMLR
2017
Distributed Semi-Supervised Learning with Kernel Ridge Regression
Xiangyu Chang
,
Shao-Bo Lin
,
Ding-Xuan Zhou
AISTATS
2016
Fast Convergence of Online Pairwise Learning Algorithms
Martin Boissier
,
Siwei Lyu
,
Yiming Ying
,
Ding-Xuan Zhou
JMLR
2016
Iterative Regularization for Learning with Convex Loss Functions
Junhong Lin
,
Lorenzo Rosasco
,
Ding-Xuan Zhou
JMLR
2016
Sparsity and Error Analysis of Empirical Feature-Based Regularization Schemes
Xin Guo
,
Jun Fan
,
Ding-Xuan Zhou
JMLR
2015
Learning Theory of Randomized Kaczmarz Algorithm
Junhong Lin
,
Ding-Xuan Zhou
JMLR
2009
Classification with Gaussians and Convex Loss
Dao-Hong Xiang
,
Ding-Xuan Zhou
JMLR
2009
Online Learning with Samples Drawn from Non-Identical Distributions
Ting Hu
,
Ding-Xuan Zhou
JMLR
2007
Learnability of Gaussians with Flexible Variances
Yiming Ying
,
Ding-Xuan Zhou
JMLR
2006
Learning Coordinate Covariances via Gradients
Sayan Mukherjee
,
Ding-Xuan Zhou
JMLR
2004
Support Vector Machine Soft Margin Classifiers: Error Analysis
Di-Rong Chen
,
Qiang Wu
,
Yiming Ying
,
Ding-Xuan Zhou