Zhou, Samson

29 publications

ICLR 2025 Fair Clustering in the Sliding Window Model Vincent Cohen-Addad, Shaofeng H.-C. Jiang, Qiaoyuan Yang, Yubo Zhang, Samson Zhou
ICLR 2025 Fair Submodular Cover Wenjing Chen, Shuo Xing, Samson Zhou, Victoria G. Crawford
ICML 2025 Learning-Augmented Hierarchical Clustering Vladimir Braverman, Jon C. Ergun, Chen Wang, Samson Zhou
ICLR 2025 Learning-Augmented Search Data Structures Chunkai Fu, Brandon G. Nguyen, Jung Hoon Seo, Ryan S. Zesch, Samson Zhou
ICML 2025 On Fine-Grained Distinct Element Estimation Ilias Diakonikolas, Daniel Kane, Jasper C.H. Lee, Thanasis Pittas, David Woodruff, Samson Zhou
ICLR 2025 On the Price of Differential Privacy for Hierarchical Clustering Chengyuan Deng, Jie Gao, Jalaj Upadhyay, Chen Wang, Samson Zhou
ICML 2025 Relative Error Fair Clustering in the Weak-Strong Oracle Model Vladimir Braverman, Prathamesh Dharangutte, Shaofeng H.-C. Jiang, Hoai-An Nguyen, Chen Wang, Yubo Zhang, Samson Zhou
NeurIPS 2024 Adversarially Robust Dense-Sparse Tradeoffs via Heavy-Hitters David P. Woodruff, Samson Zhou
NeurIPS 2024 On Socially Fair Low-Rank Approximation and Column Subset Selection Zhao Song, Ali Vakilian, David P. Woodruff, Samson Zhou
ICML 2024 Private Vector Mean Estimation in the Shuffle Model: Optimal Rates Require Many Messages Hilal Asi, Vitaly Feldman, Jelani Nelson, Huy Nguyen, Kunal Talwar, Samson Zhou
ICLR 2023 Differentially Private $l_2$-Heavy Hitters in the Sliding Window Model Jeremiah Blocki, Seunghoon Lee, Tamalika Mukherjee, Samson Zhou
ICML 2023 Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix Factorization Ameya Velingker, Maximilian Vötsch, David Woodruff, Samson Zhou
NeurIPS 2023 Near-Optimal $k$-Clustering in the Sliding Window Model David Woodruff, Peilin Zhong, Samson Zhou
NeurIPS 2023 On Robust Streaming for Learning with Experts: Algorithms and Lower Bounds David Woodruff, Fred Zhang, Samson Zhou
ICML 2023 Provable Data Subset Selection for Efficient Neural Networks Training Murad Tukan, Samson Zhou, Alaa Maalouf, Daniela Rus, Vladimir Braverman, Dan Feldman
ICLR 2023 Robust Algorithms on Adaptive Inputs from Bounded Adversaries Yeshwanth Cherapanamjeri, Sandeep Silwal, David Woodruff, Fred Zhang, Qiuyi Zhang, Samson Zhou
ICLR 2023 Subquadratic Algorithms for Kernel Matrices via Kernel Density Estimation Ainesh Bakshi, Piotr Indyk, Praneeth Kacham, Sandeep Silwal, Samson Zhou
AISTATS 2022 New Coresets for Projective Clustering and Applications Murad Tukan, Xuan Wu, Samson Zhou, Vladimir Braverman, Dan Feldman
ICLR 2022 Fast Regression for Structured Inputs Raphael A Meyer, Cameron N Musco, Christopher P Musco, David Woodruff, Samson Zhou
ICML 2022 Hardness and Algorithms for Robust and Sparse Optimization Eric Price, Sandeep Silwal, Samson Zhou
ICLR 2022 Learning-Augmented $k$-Means Clustering Jon C. Ergun, Zhili Feng, Sandeep Silwal, David Woodruff, Samson Zhou
NeurIPS 2022 Learning-Augmented Algorithms for Online Linear and Semidefinite Programming Elena Grigorescu, Young-San Lin, Sandeep Silwal, Maoyuan Song, Samson Zhou
NeurIPS 2021 Adversarial Robustness of Streaming Algorithms Through Importance Sampling Vladimir Braverman, Avinatan Hassidim, Yossi Matias, Mariano Schain, Sandeep Silwal, Samson Zhou
ICMLW 2021 Adversarial Robustness of Streaming Algorithms Through Importance Sampling Vladimir Braverman, Avinatan Hassidim, Yossi Matias, Mariano Schain, Sandeep Silwal, Samson Zhou
NeurIPS 2021 Dimensionality Reduction for Wasserstein Barycenter Zachary Izzo, Sandeep Silwal, Samson Zhou
ACML 2021 Efficient Coreset Constructions via Sensitivity Sampling Vladimir Braverman, Dan Feldman, Harry Lang, Adiel Statman, Samson Zhou
ICLR 2021 Learning a Latent Simplex in Input Sparsity Time Ainesh Bakshi, Chiranjib Bhattacharyya, Ravi Kannan, David Woodruff, Samson Zhou
ICLR 2020 Data-Independent Neural Pruning via Coresets Ben Mussay, Margarita Osadchy, Vladimir Braverman, Samson Zhou, Dan Feldman
AISTATS 2020 “Bring Your Own Greedy”+Max: Near-Optimal 1/2-Approximations for Submodular Knapsack Grigory Yaroslavtsev, Samson Zhou, Dmitrii Avdiukhin