Zhou, Yanqi
15 publications
ICLR
2024
Mixture-of-Experts Meets Instruction Tuning: A Winning Combination for Large Language Models
Sheng Shen, Le Hou, Yanqi Zhou, Nan Du, Shayne Longpre, Jason Wei, Hyung Won Chung, Barret Zoph, William Fedus, Xinyun Chen, Tu Vu, Yuexin Wu, Wuyang Chen, Albert Webson, Yunxuan Li, Vincent Y Zhao, Hongkun Yu, Kurt Keutzer, Trevor Darrell, Denny Zhou ICML
2023
Brainformers: Trading Simplicity for Efficiency
Yanqi Zhou, Nan Du, Yanping Huang, Daiyi Peng, Chang Lan, Da Huang, Siamak Shakeri, David So, Andrew M. Dai, Yifeng Lu, Zhifeng Chen, Quoc V Le, Claire Cui, James Laudon, Jeff Dean NeurIPS
2023
Conditional Adapters: Parameter-Efficient Transfer Learning with Fast Inference
Tao Lei, Junwen Bai, Siddhartha Brahma, Joshua Ainslie, Kenton Lee, Yanqi Zhou, Nan Du, Vincent Zhao, Yuexin Wu, Bo Li, Yu Zhang, Ming-Wei Chang ICCV
2023
TripLe: Revisiting Pretrained Model Reuse and Progressive Learning for Efficient Vision Transformer Scaling and Searching
Cheng Fu, Hanxian Huang, Zixuan Jiang, Yun Ni, Lifeng Nai, Gang Wu, Liqun Cheng, Yanqi Zhou, Sheng Li, Andrew Li, Jishen Zhao ICML
2022
GLaM: Efficient Scaling of Language Models with Mixture-of-Experts
Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten P Bosma, Zongwei Zhou, Tao Wang, Emma Wang, Kellie Webster, Marie Pellat, Kevin Robinson, Kathleen Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc Le, Yonghui Wu, Zhifeng Chen, Claire Cui NeurIPS
2020
Transferable Graph Optimizers for ML Compilers
Yanqi Zhou, Sudip Roy, Amirali Abdolrashidi, Daniel Wong, Peter Ma, Qiumin Xu, Hanxiao Liu, Phitchaya Phothilimtha, Shen Wang, Anna Goldie, Azalia Mirhoseini, James Laudon