ML Anthology
Authors
Search
About
Ziebart, Brian D
22 publications
NeurIPS
2025
Imitation Beyond Expectation Using Pluralistic Stochastic Dominance
Ali Farajzadeh
,
Danyal Saeed
,
Syed M Abbas
,
Rushit N. Shah
,
Aadirupa Saha
,
Brian D Ziebart
IJCAI
2025
Imitation Learning via Focused Satisficing
Rushit N. Shah
,
Nikolaos Agadakos
,
Synthia Sasulski
,
Ali Farajzadeh
,
Sanjiban Choudhury
,
Brian D. Ziebart
NeurIPSW
2024
Value-Aligned Imitation via Focused Satisficing
Rushit N. Shah
,
Nikolaos Agadakos
,
Synthia Sasulski
,
Ali Farajzadeh
,
Sanjiban Choudhury
,
Brian D Ziebart
ICML
2023
Superhuman Fairness
Omid Memarrast
,
Linh Vu
,
Brian D Ziebart
ICLRW
2023
Superhuman Fairness
Omid Memarrast
,
Linh Vu
,
Brian D Ziebart
AAAI
2021
Robust Fairness Under Covariate Shift
Ashkan Rezaei
,
Anqi Liu
,
Omid Memarrast
,
Brian D. Ziebart
AAAI
2020
Fairness for Robust Log Loss Classification
Ashkan Rezaei
,
Rizal Fathony
,
Omid Memarrast
,
Brian D. Ziebart
WACV
2019
ADA: Adversarial Data Augmentation for Object Detection
Sima Behpour
,
Kris M. Kitani
,
Brian D. Ziebart
AAAI
2018
ARC: Adversarial Robust Cuts for Semi-Supervised and Multi-Label Classification
Sima Behpour
,
Wei Xing
,
Brian D. Ziebart
UAI
2016
Adversarial Inverse Optimal Control for General Imitation Learning Losses and Embodiment Transfer
Xiangli Chen
,
Mathew Monfort
,
Brian D. Ziebart
,
Peter Carr
IJCAI
2016
Adversarial Sequence Tagging
Jia Li
,
Kaiser Asif
,
Hong Wang
,
Brian D. Ziebart
,
Tanya Y. Berger-Wolf
AISTATS
2016
Robust Covariate Shift Regression
Xiangli Chen
,
Mathew Monfort
,
Anqi Liu
,
Brian D. Ziebart
UAI
2015
Adversarial Cost-Sensitive Classification
Kaiser Asif
,
Wei Xing
,
Sima Behpour
,
Brian D. Ziebart
IJCAI
2015
Graph-Based Inverse Optimal Control for Robot Manipulation
Arunkumar Byravan
,
Mathew Monfort
,
Brian D. Ziebart
,
Byron Boots
,
Dieter Fox
AAAI
2015
Intent Prediction and Trajectory Forecasting via Predictive Inverse Linear-Quadratic Regulation
Mathew Monfort
,
Anqi Liu
,
Brian D. Ziebart
AISTATS
2015
Predictive Inverse Optimal Control for Linear-Quadratic-Gaussian Systems
Xiangli Chen
,
Brian D. Ziebart
AAAI
2015
Shift-Pessimistic Active Learning Using Robust Bias-Aware Prediction
Anqi Liu
,
Lev Reyzin
,
Brian D. Ziebart
ECCV
2012
Activity Forecasting
Kris M. Kitani
,
Brian D. Ziebart
,
James Andrew Bagnell
,
Martial Hebert
ICML
2011
Computational Rationalization: The Inverse Equilibrium Problem
Kevin Waugh
,
Brian D. Ziebart
,
Drew Bagnell
ICML
2010
Modeling Interaction via the Principle of Maximum Causal Entropy
Brian D. Ziebart
,
J. Andrew Bagnell
,
Anind K. Dey
AAAI
2008
Maximum Entropy Inverse Reinforcement Learning
Brian D. Ziebart
,
Andrew L. Maas
,
J. Andrew Bagnell
,
Anind K. Dey
UAI
2007
Learning Selectively Conditioned Forest Structures with Applications to DBNs and Classification
Brian D. Ziebart
,
Anind K. Dey
,
James A. Bagnell