Radial Basis Function Neural Networks Have Superlinear VC Dimension

Cite

Text

Schmitt. "Radial Basis Function Neural Networks Have Superlinear VC Dimension." Annual Conference on Computational Learning Theory, 2001. doi:10.1007/3-540-44581-1_2

Markdown

[Schmitt. "Radial Basis Function Neural Networks Have Superlinear VC Dimension." Annual Conference on Computational Learning Theory, 2001.](https://mlanthology.org/colt/2001/schmitt2001colt-radial/) doi:10.1007/3-540-44581-1_2

BibTeX

@inproceedings{schmitt2001colt-radial,
  title     = {{Radial Basis Function Neural Networks Have Superlinear VC Dimension}},
  author    = {Schmitt, Michael},
  booktitle = {Annual Conference on Computational Learning Theory},
  year      = {2001},
  pages     = {14-30},
  doi       = {10.1007/3-540-44581-1_2},
  url       = {https://mlanthology.org/colt/2001/schmitt2001colt-radial/}
}