Adaptive Learning with Robust Generalization Guarantees

Abstract

The traditional notion of generalization---i.e., learning a hypothesis whose empirical error is close to its true error---is surprisingly brittle. As has recently been noted in [DFH+15b], even if several algorithms have this guarantee in isolation, the guarantee need not hold if the algorithms are composed adaptively. In this paper, we study three notions of generalization---increasing in strength---that are robust to postprocessing and amenable to adaptive composition, and examine the relationships between them. We call the weakest such notion Robust Generalization. A second, intermediate, notion is the stability guarantee known as differential privacy. The strongest guarantee we consider we call Perfect Generalization. We prove that every hypothesis class that is PAC learnable is also PAC learnable in a robustly generalizing fashion, with almost the same sample complexity. It was previously known that differentially private algorithms satisfy robust generalization. In this paper, we show that robust generalization is a strictly weaker concept, and that there is a learning task that can be carried out subject to robust generalization guarantees, yet cannot be carried out subject to differential privacy. We also show that perfect generalization is a strictly stronger guarantee than differential privacy, but that, nevertheless, many learning tasks can be carried out subject to the guarantees of perfect generalization.

Cite

Text

Cummings et al. "Adaptive Learning with Robust Generalization Guarantees." Annual Conference on Computational Learning Theory, 2016.

Markdown

[Cummings et al. "Adaptive Learning with Robust Generalization Guarantees." Annual Conference on Computational Learning Theory, 2016.](https://mlanthology.org/colt/2016/cummings2016colt-adaptive/)

BibTeX

@inproceedings{cummings2016colt-adaptive,
  title     = {{Adaptive Learning with Robust Generalization Guarantees}},
  author    = {Cummings, Rachel and Ligett, Katrina and Nissim, Kobbi and Roth, Aaron and Wu, Zhiwei Steven},
  booktitle = {Annual Conference on Computational Learning Theory},
  year      = {2016},
  pages     = {772-814},
  url       = {https://mlanthology.org/colt/2016/cummings2016colt-adaptive/}
}