Exact Tensor Completion with Sum-of-Squares
Abstract
We obtain the first polynomial-time algorithm for exact tensor completion that improves over the bound implied by reduction to matrix completion. The algorithm recovers an unknown 3-tensor with $r$ incoherent, orthogonal components in $\mathbb R^n$ from $r⋅\tilde O(n^1.5)$ randomly observed entries of the tensor. This bound improves over the previous best one of $r⋅\tilde O(n^2)$ by reduction to exact matrix completion. Our bound also matches the best known results for the easier problem of approximate tensor completion (Barak & Moitra, 2015). Our algorithm and analysis extends seminal results for exact matrix completion (Candes & Recht, 2009) to the tensor setting via the sum-of-squares method. The main technical challenge is to show that a small number of randomly chosen monomials are enough to construct a degree-3 polynomial with precisely planted orthogonal global optima over the sphere and that this fact can be certified within the sum-of-squares proof system.
Cite
Text
Potechin and Steurer. "Exact Tensor Completion with Sum-of-Squares." Proceedings of the 2017 Conference on Learning Theory, 2017.Markdown
[Potechin and Steurer. "Exact Tensor Completion with Sum-of-Squares." Proceedings of the 2017 Conference on Learning Theory, 2017.](https://mlanthology.org/colt/2017/potechin2017colt-exact/)BibTeX
@inproceedings{potechin2017colt-exact,
title = {{Exact Tensor Completion with Sum-of-Squares}},
author = {Potechin, Aaron and Steurer, David},
booktitle = {Proceedings of the 2017 Conference on Learning Theory},
year = {2017},
pages = {1619-1673},
volume = {65},
url = {https://mlanthology.org/colt/2017/potechin2017colt-exact/}
}