Optimal Errors and Phase Transitions in High-Dimensional Generalized Linear Models
Abstract
Significance High-dimensional generalized linear models are basic building blocks of current data analysis tools including multilayers neural networks. They arise in signal processing, statistical inference, machine learning, communication theory, and other fields. We establish rigorously the intrinsic information-theoretic limitations of inference and learning for a class of randomly generated instances of generalized linear models, thus closing several decades-old conjectures. Moreover, we delimit regions of parameters for which the optimal error rates are efficiently achievable with currently known algorithms. Our proof technique is able to deal with the output nonlinearity and is hence of independent interest, opening ways to establish similar results for models of neural networks where nonlinearities are essential but in general difficult to account for. Generalized linear models (GLMs) are used in high-dimensional machine learning, statistics, communications, and signal processing. In this paper we analyze GLMs when the data matrix is random, as relevant in problems such as compressed sensing, error-correcting codes, or benchmark models in neural networks. We evaluate the mutual information (or “free entropy”) from which we deduce the Bayes-optimal estimation and generalization errors. Our analysis applies to the high-dimensional limit where both the number of samples and the dimension are large and their ratio is fixed. Nonrigorous predictions for the optimal errors existed for special cases of GLMs, e.g., for the perceptron, in the field of statistical physics based on the so-called replica method. Our present paper rigorously establishes those decades-old conjectures and brings forward their algorithmic interpretation in terms of performance of the generalized approximate message-passing algorithm. Furthermore, we tightly characterize, for many learning problems, regions of parameters for which this algorithm achieves the optimal performance and locate the associated sharp phase transitions separating learnable and nonlearnable regions. We believe that this random version of GLMs can serve as a challenging benchmark for multipurpose algorithms.
Cite
Text
Barbier et al. "Optimal Errors and Phase Transitions in High-Dimensional Generalized Linear Models." Annual Conference on Computational Learning Theory, 2018. doi:10.1073/pnas.1802705116Markdown
[Barbier et al. "Optimal Errors and Phase Transitions in High-Dimensional Generalized Linear Models." Annual Conference on Computational Learning Theory, 2018.](https://mlanthology.org/colt/2018/barbier2018colt-optimal/) doi:10.1073/pnas.1802705116BibTeX
@inproceedings{barbier2018colt-optimal,
title = {{Optimal Errors and Phase Transitions in High-Dimensional Generalized Linear Models}},
author = {Barbier, Jean and Krzakala, Florent and Macris, Nicolas and Miolane, Léo and Zdeborová, Lenka},
booktitle = {Annual Conference on Computational Learning Theory},
year = {2018},
pages = {728-731},
doi = {10.1073/pnas.1802705116},
url = {https://mlanthology.org/colt/2018/barbier2018colt-optimal/}
}