An Optimal High-Order Tensor Method for Convex Optimization

Abstract

This paper is concerned with finding an optimal algorithm for minimizing a composite convex objective function. The basic setting is that the objective is the sum of two convex functions: the first function is smooth with up to the d-th order derivative information available, and the second function is possibly non-smooth, but its proximal tensor mappings can be computed approximately in an efficient manner. The problem is to find – in that setting – the best possible (optimal) iteration complexity for convex optimization. Along that line, for the smooth case (without the second non-smooth part in the objective), Nesterov (1983) proposed an optimal algorithm for the first-order methods (d=1) with iteration complexity O( 1 / k^2 ). A high-order tensor algorithm with iteration complexity of O( 1 / k^d+1 ) was proposed by Baes (2009) and Nesterov (2018). In this paper, we propose a new high-order tensor algorithm for the general composite case, with the iteration complexity of O( 1 / k^(3d+1)/2 ), which matches the lower bound for the d-th order methods as established in Nesterov (2018) and Shamir et al. (2018), and hence is optimal. Our approach is based on the Accelerated Hybrid Proximal Extragradient (A-HPE) framework proposed in Monteiro and Svaiter (2013), where a bisection procedure is installed for each A-HPE iteration. At each bisection step a proximal tensor subproblem is approximately solved, and the total number of bisection steps per A-HPE iteration is bounded by a logarithmic factor in the precision required.

Cite

Text

Jiang et al. "An Optimal High-Order Tensor Method for Convex Optimization." Conference on Learning Theory, 2019.

Markdown

[Jiang et al. "An Optimal High-Order Tensor Method for Convex Optimization." Conference on Learning Theory, 2019.](https://mlanthology.org/colt/2019/jiang2019colt-optimal/)

BibTeX

@inproceedings{jiang2019colt-optimal,
  title     = {{An Optimal High-Order Tensor Method for Convex Optimization}},
  author    = {Jiang, Bo and Wang, Haoyue and Zhang, Shuzhong},
  booktitle = {Conference on Learning Theory},
  year      = {2019},
  pages     = {1799-1801},
  volume    = {99},
  url       = {https://mlanthology.org/colt/2019/jiang2019colt-optimal/}
}