Moments, Random Walks, and Limits for Spectrum Approximation

Abstract

We study lower bounds for the problem of approximating a one dimensional distribution given (noisy) measurements of its moments. We show that there are distributions on $[-1,1]$ that cannot be approximated to accuracy $\epsilon$ in Wasserstein-1 distance even if we know \emph{all} of their moments to multiplicative accuracy $(1\pm2^{-\Omega(1/\epsilon)})$; this result matches an upper bound of Kong and Valiant [Annals of Statistics, 2017]. To obtain our result, we provide a hard instance involving distributions induced by the eigenvalue spectra of carefully constructed graph adjacency matrices. Efficiently approximating such spectra in Wasserstein-1 distance is a well-studied algorithmic problem, and a recent result of Cohen-Steiner et al. [KDD 2018] gives a method based on accurately approximating spectral moments using $2^{O(1/\epsilon)}$ random walks initiated at uniformly random nodes in the graph.As a strengthening of our main result, we show that improving the dependence on $1/\epsilon$ in this result would require a new algorithmic approach. Specifically, no algorithm can compute an $\epsilon$-accurate approximation to the spectrum of a normalized graph adjacency matrix with constant probability, even when given the transcript of $2^{\Omega(1/\epsilon)}$ random walks of length $2^{\Omega(1/\epsilon)}$ started at random nodes.

Cite

Text

Jin et al. "Moments, Random Walks, and Limits for Spectrum Approximation." Conference on Learning Theory, 2023.

Markdown

[Jin et al. "Moments, Random Walks, and Limits for Spectrum Approximation." Conference on Learning Theory, 2023.](https://mlanthology.org/colt/2023/jin2023colt-moments/)

BibTeX

@inproceedings{jin2023colt-moments,
  title     = {{Moments, Random Walks, and Limits for Spectrum Approximation}},
  author    = {Jin, Yujia and Musco, Christopher and Sidford, Aaron and Singh, Apoorv Vikram},
  booktitle = {Conference on Learning Theory},
  year      = {2023},
  pages     = {5373-5394},
  volume    = {195},
  url       = {https://mlanthology.org/colt/2023/jin2023colt-moments/}
}