COLT 2025
182 papers
A Distributional-Lifting Theorem for PAC Learning
Guy Blanc, Jane Lange, Carmen Strassle, Li-Yang Tan A Fine-Grained Characterization of PAC Learnability
Marco Bressan, Nataly Brukhim, Nicolò Cesa-Bianchi, Emmanuel Esposito, Yishay Mansour, Shay Moran, Maximilian Thiessen A Theory of Learning with Autoregressive Chain of Thought
Nirmit Joshi, Gal Vardi, Adam Block, Surbhi Goel, Zhiyuan Li, Theodor Misiakiewicz, Nathan Srebro Alternating Regret for Online Convex Optimization
Soumita Hait, Ping Li, Haipeng Luo, Mengxiao Zhang Anytime Acceleration of Gradient Descent
Zihan Zhang, Jason Lee, Simon Du, Yuxin Chen Can a Calibration Metric Be Both Testable and Actionable?
Raphael Rossellini, Jake A. Soloff, Rina Foygel Barber, Zhimei Ren, Rebecca Willett Corrupted Learning Dynamics in Games
Taira Tsuchiya, Shinji Ito, Haipeng Luo Data Selection for ERMs
Steve Hanneke, Shay Moran, Alexander Shlimovich, Amir Yehudayoff Deterministic Apple Tasting
Zachary Chase, Idan Mehalel DiscQuant: A Quantization Method for Neural Networks Inspired by Discrepancy Theory
Jerry Chee, Arturs Backurs, Rainie Heck, Li Zhang, Janardhan Kulkarni, Thomas Rothvoss, Sivakanth Gopi Gradient Methods with Online Scaling
Wenzhi Gao, Ya-Chi Chu, Yinyu Ye, Madeleine Udell Learning Algorithms in the Limit
Hristo Papazov, Nicolas Flammarion Learning Compositional Functions with Transformers from Easy-to-Hard Data
Zixuan Wang, Eshaan Nichani, Alberto Bietti, Alex Damian, Daniel Hsu, Jason D Lee, Denny Wu Lower Bounds for Greedy Teaching Set Constructions
Spencer Compton, Chirag Pabbaraju, Nikita Zhivotovskiy Market Making Without Regret
Nicolò Cesa-Bianchi, Tommaso Cesari, Roberto Colomboni, Luigi Foscari, Vinayak Pathak Metric Clustering and Graph Optimization Problems Using Weak Comparison Oracles
Rahul Raychaudhury, Wen-Zhi Li, Syamantak Das, Sainyam Galhotra, Stavros Sintos Metric Embeddings Beyond Bi-Lipschitz Distortion via Sherali-Adams
Ainesh Bakshi, Vincent Cohen-Addad, Rajesh Jayaram, Samuel B. Hopkins, Silvio Lattanzi Of Dice and Games: A Theory of Generalized Boosting
Marco Bressan, Nataly Brukhim, Nicolò Cesa-Bianchi, Emmanuel Esposito, Yishay Mansour, Shay Moran, Maximilian Thiessen On the Hardness of Bandit Learning
Nataly Brukhim, Aldo Pacchiano, Miroslav Dudik, Robert Schapire Online Covariance Estimation in Nonsmooth Stochastic Approximation
Liwei Jiang, Abhishek Roy, Krishnakumar Balasubramanian, Damek Davis, Dmitriy Drusvyatskiy, Sen Na Open Problem: Data Selection for Regression Tasks
Steve Hanneke, Shay Moran, Alexander Shlimovich, Amir Yehudayoff Open Problem: Fixed-Parameter Tractability of Zonotope Problems
Vincent Froese, Moritz Grillo, Christoph Hertrich, Martin Skutella Optimal Scheduling of Dynamic Transport
Panos Tsimpos, Ren Zhi, Jakob Zech, Youssef Marzouk Orthogonal Causal Calibration (Extended Abstract)
Justin Whitehouse, Christopher Jung, Vasilis Syrgkanis, Bryan Wilder, Zhiwei Steven Wu Predicting Quantum Channels over General Product Distributions
Sitan Chen, Jaume de Dios Pont, Jun-Ting Hsieh, Hsin-Yuan Huang, Jane Lange, Jerry Li PREM: Privately Answering Statistical Queries with Relative Error
Badih Ghazi, Cristóbal Guzmán, Pritish Kamath, Alexander Knop, Ravi Kumar, Pasin Manurangsi, Sushant Sachdeva Private List Learnability vs. Online List Learnability
Steve Hanneke, Shay Moran, Hilla Schefler, Iska Tsubari Rate-Preserving Reductions for Blackwell Approachability
Christoph Dann, Yishay Mansour, Mehryar Mohri, Jon Schneider, Balasubramanian Sivan Sharper Bounds for Chebyshev Moment Matching, with Applications
Cameron Musco, Christopher Musco, Lucas Rosenblatt, Apoorv Vikram Singh Spherical Dimension
Bogdan Chornomaz, Shay Moran, Tom Waknine Spike-and-Slab Posterior Sampling in High Dimensions
Symantak Kumar, Purnamrita Sarkar, Kevin Tian, Yusong Zhu Testing Juntas and Junta Subclasses with Relative Error
Xi Chen, William Pires, Toniann Pitassi, R. A. Servedio The Adaptive Complexity of Finding a Stationary Point
Zhou Huanjian, Han Andi, Takeda Akiko, Sugiyama Masashi The Space Complexity of Learning-Unlearning Algorithms (extended Abstract)
Yeshwanth Cherapanamjeri, Sumegba Garg, Nived Rajaraman, Ayush Sekhari, Abhishek Shetty Thompson Sampling for Bandit Convex Optimisation
Alireza Bakhtiari, Tor Lattimore, Csaba Szepesvári Towards Fair Representation: Clustering and Consensus
Diptarka Chakraborty, Kushagra Chatterjee, Debarati Das, Tien Long Nguyen, Romina Nobahari