Velociraptor: Leveraging Visual Foundation Models for Label-Free, Risk-Aware Off-Road Navigation

Abstract

Traversability analysis in off-road regimes is a challenging task that requires understanding of multi-modal inputs such as camera and LiDAR. These measurements are often sparse, noisy, and difficult to interpret, particularly in the off-road setting. Existing systems are very engineering-intensive, often requiring hand-tuning of traversability rules and manual annotation of semantic labels. Furthermore, existing methods for analyzing traversability risk and uncertainty are computationally expensive or not well-calibrated. We propose Velociraptor, a traversability analysis system that performs [veloci]ty-informed, [r]isk-[a]ware [p]erception and [t]raversability for [o]ff-[r]oad driving without any human annotations. We achieve this via the use of visual foundation models (VFMs) and geometric mapping to produce a rich visual-geometric representation of the robot’s local environment. We then leverage this representation to produce costmaps, speedmaps, and uncertainty maps using state-of-the-art fully self-supervised techniques. Our approach enables intelligent high-speed off-road navigation with zero human annotation, and with about forty minutes of expert data, outperforms several geometric and semantic traversability baselines, both in offline and real-world robot trials across multiple challenging off-road sites.

Cite

Text

Triest et al. "Velociraptor: Leveraging Visual Foundation Models for Label-Free, Risk-Aware Off-Road Navigation." Proceedings of The 8th Conference on Robot Learning, 2024.

Markdown

[Triest et al. "Velociraptor: Leveraging Visual Foundation Models for Label-Free, Risk-Aware Off-Road Navigation." Proceedings of The 8th Conference on Robot Learning, 2024.](https://mlanthology.org/corl/2024/triest2024corl-velociraptor/)

BibTeX

@inproceedings{triest2024corl-velociraptor,
  title     = {{Velociraptor: Leveraging Visual Foundation Models for Label-Free, Risk-Aware Off-Road Navigation}},
  author    = {Triest, Samuel and Sivaprakasam, Matthew and Aich, Shubhra and Fan, David and Wang, Wenshan and Scherer, Sebastian},
  booktitle = {Proceedings of The 8th Conference on Robot Learning},
  year      = {2024},
  pages     = {4483-4494},
  volume    = {270},
  url       = {https://mlanthology.org/corl/2024/triest2024corl-velociraptor/}
}