Rolling Riemannian Manifolds to Solve the Multi-Class Classification Problem

Abstract

In the past few years there has been a growing interest on geometric frameworks to learn supervised classification models on Riemannian manifolds [31, 27]. A popular framework, valid over any Riemannian manifold, was proposed in [31] for binary classification. Once moving from binary to multi-class classification this paradigm is not valid anymore, due to the spread of multiple positive classes on the manifold [27]. It is then natural to ask whether the multi-class paradigm could be extended to operate on a large class of Riemannian manifolds. We propose a mathematically well-founded classification paradigm that allows to extend the work in [31] to multi-class models, taking into account the structure of the space. The idea is to project all the data from the manifold onto an affine tangent space at a particular point. To mitigate the distortion induced by local diffeomorphisms, we introduce for the first time in the computer vision community a well-founded mathematical concept, so-called Rolling map [21, 16]. The novelty in this alternate school of thought is that the manifold will be firstly rolled (without slipping or twisting) as a rigid body, then the given data is unwrapped onto the affine tangent space, where the classification is performed.

Cite

Text

Caseiro et al. "Rolling Riemannian Manifolds to Solve the Multi-Class Classification Problem." Conference on Computer Vision and Pattern Recognition, 2013. doi:10.1109/CVPR.2013.13

Markdown

[Caseiro et al. "Rolling Riemannian Manifolds to Solve the Multi-Class Classification Problem." Conference on Computer Vision and Pattern Recognition, 2013.](https://mlanthology.org/cvpr/2013/caseiro2013cvpr-rolling/) doi:10.1109/CVPR.2013.13

BibTeX

@inproceedings{caseiro2013cvpr-rolling,
  title     = {{Rolling Riemannian Manifolds to Solve the Multi-Class Classification Problem}},
  author    = {Caseiro, Rui and Martins, Pedro and Henriques, Joao F. and Leite, Fatima Silva and Batista, Jorge},
  booktitle = {Conference on Computer Vision and Pattern Recognition},
  year      = {2013},
  doi       = {10.1109/CVPR.2013.13},
  url       = {https://mlanthology.org/cvpr/2013/caseiro2013cvpr-rolling/}
}