Kernel Methods on the Riemannian Manifold of Symmetric Positive Definite Matrices
Abstract
Symmetric Positive Definite (SPD) matrices have become popular to encode image information. Accounting for the geometry of the Riemannian manifold of SPD matrices has proven key to the success of many algorithms. However, most existing methods only approximate the true shape of the manifold locally by its tangent plane. In this paper, inspired by kernel methods, we propose to map SPD matrices to a high dimensional Hilbert space where Euclidean geometry applies. To encode the geometry of the manifold in the mapping, we introduce a family of provably positive definite kernels on the Riemannian manifold of SPD matrices. These kernels are derived from the Gaussian kernel, but exploit different metrics on the manifold. This lets us extend kernel-based algorithms developed for Euclidean spaces, such as SVM and kernel PCA, to the Riemannian manifold of SPD matrices. We demonstrate the benefits of our approach on the problems of pedestrian detection, object categorization, texture analysis, 2D motion segmentation and Diffusion Tensor Imaging (DTI) segmentation.
Cite
Text
Jayasumana et al. "Kernel Methods on the Riemannian Manifold of Symmetric Positive Definite Matrices." Conference on Computer Vision and Pattern Recognition, 2013. doi:10.1109/CVPR.2013.17Markdown
[Jayasumana et al. "Kernel Methods on the Riemannian Manifold of Symmetric Positive Definite Matrices." Conference on Computer Vision and Pattern Recognition, 2013.](https://mlanthology.org/cvpr/2013/jayasumana2013cvpr-kernel/) doi:10.1109/CVPR.2013.17BibTeX
@inproceedings{jayasumana2013cvpr-kernel,
title = {{Kernel Methods on the Riemannian Manifold of Symmetric Positive Definite Matrices}},
author = {Jayasumana, Sadeep and Hartley, Richard and Salzmann, Mathieu and Li, Hongdong and Harandi, Mehrtash},
booktitle = {Conference on Computer Vision and Pattern Recognition},
year = {2013},
doi = {10.1109/CVPR.2013.17},
url = {https://mlanthology.org/cvpr/2013/jayasumana2013cvpr-kernel/}
}