Single-Pedestrian Detection Aided by Multi-Pedestrian Detection

Abstract

In this paper, we address the challenging problem of detecting pedestrians who appear in groups and have interaction. A new approach is proposed for single-pedestrian detection aided by multi-pedestrian detection. A mixture model of multi-pedestrian detectors is designed to capture the unique visual cues which are formed by nearby multiple pedestrians but cannot be captured by single-pedestrian detectors. A probabilistic framework is proposed to model the relationship between the configurations estimated by singleand multi-pedestrian detectors, and to refine the single-pedestrian detection result with multi-pedestrian detection. It can integrate with any single-pedestrian detector without significantly increasing the computation load. 15 state-of-the-art single-pedestrian detection approaches are investigated on three widely used public datasets: Caltech, TUD-Brussels and ETH. Experimental results show that our framework significantly improves all these approaches. The average improvement is 9% on the Caltech-Test dataset, aveaon the TUD-Brussels dataset and teh-on the ETH dataset in terms of average miss rate. The lowest average miss rate is reduced from 48% to 43% on the Caltech-Test dataset, from edueto fom4on the TUD-Brussels dataset and from etfoto 55%ton the ETH dataset.

Cite

Text

Ouyang and Wang. "Single-Pedestrian Detection Aided by Multi-Pedestrian Detection." Conference on Computer Vision and Pattern Recognition, 2013. doi:10.1109/CVPR.2013.411

Markdown

[Ouyang and Wang. "Single-Pedestrian Detection Aided by Multi-Pedestrian Detection." Conference on Computer Vision and Pattern Recognition, 2013.](https://mlanthology.org/cvpr/2013/ouyang2013cvpr-singlepedestrian/) doi:10.1109/CVPR.2013.411

BibTeX

@inproceedings{ouyang2013cvpr-singlepedestrian,
  title     = {{Single-Pedestrian Detection Aided by Multi-Pedestrian Detection}},
  author    = {Ouyang, Wanli and Wang, Xiaogang},
  booktitle = {Conference on Computer Vision and Pattern Recognition},
  year      = {2013},
  doi       = {10.1109/CVPR.2013.411},
  url       = {https://mlanthology.org/cvpr/2013/ouyang2013cvpr-singlepedestrian/}
}