Fast and Flexible Convolutional Sparse Coding
Abstract
Convolutional sparse coding (CSC) has become an increasingly important tool in machine learning and computer vision. Image features can be learned and subsequently used for classification and reconstruction tasks. As opposed to patch-based methods, convolutional sparse coding operates on whole images, thereby seamlessly capturing the correlation between local neighborhoods. In this paper, we propose a new approach to solving CSC problems and show that our method converges significantly faster and also finds better solutions than the state of the art. In addition, the proposed method is the first efficient approach to allow for proper boundary conditions to be imposed and it also supports feature learning from incomplete data as well as general reconstruction problems.
Cite
Text
Heide et al. "Fast and Flexible Convolutional Sparse Coding." Conference on Computer Vision and Pattern Recognition, 2015. doi:10.1109/CVPR.2015.7299149Markdown
[Heide et al. "Fast and Flexible Convolutional Sparse Coding." Conference on Computer Vision and Pattern Recognition, 2015.](https://mlanthology.org/cvpr/2015/heide2015cvpr-fast/) doi:10.1109/CVPR.2015.7299149BibTeX
@inproceedings{heide2015cvpr-fast,
title = {{Fast and Flexible Convolutional Sparse Coding}},
author = {Heide, Felix and Heidrich, Wolfgang and Wetzstein, Gordon},
booktitle = {Conference on Computer Vision and Pattern Recognition},
year = {2015},
doi = {10.1109/CVPR.2015.7299149},
url = {https://mlanthology.org/cvpr/2015/heide2015cvpr-fast/}
}