Spherical Embedding of Inlier Silhouette Dissimilarities

Abstract

In this paper, we introduce a spherical embedding technique to position a given set of silhouettes of an object as observed from a set of cameras arbitrarily positioned around the object. Our technique estimates dissimilarities among the silhouettes and embeds them directly in the rotation space SO(3). The embedding is obtained by an optimization scheme applied over the rotations represented with exponential maps. Since the measure for inter-silhouette dissimilarities contains many outliers, our key idea is to perform the embedding by only using a subset of the estimated dissimilarities. We present a technique that carefully screens for inlier-distances, and the pairwise scaled dissimilarities are embedded in a spherical space, diffeomorphic to SO(3). We show that our method outperforms spherical MDS embedding, demonstrate its performance on various multi-view sets, and highlight its robustness to outliers.

Cite

Text

Littwin et al. "Spherical Embedding of Inlier Silhouette Dissimilarities." Conference on Computer Vision and Pattern Recognition, 2015. doi:10.1109/CVPR.2015.7299010

Markdown

[Littwin et al. "Spherical Embedding of Inlier Silhouette Dissimilarities." Conference on Computer Vision and Pattern Recognition, 2015.](https://mlanthology.org/cvpr/2015/littwin2015cvpr-spherical/) doi:10.1109/CVPR.2015.7299010

BibTeX

@inproceedings{littwin2015cvpr-spherical,
  title     = {{Spherical Embedding of Inlier Silhouette Dissimilarities}},
  author    = {Littwin, Etai and Averbuch-Elor, Hadar and Cohen-Or, Daniel},
  booktitle = {Conference on Computer Vision and Pattern Recognition},
  year      = {2015},
  doi       = {10.1109/CVPR.2015.7299010},
  url       = {https://mlanthology.org/cvpr/2015/littwin2015cvpr-spherical/}
}