Designing Effective Inter-Pixel Information Flow for Natural Image Matting

Abstract

We present a novel, purely affinity-based natural image matting algorithm. Our method relies on carefully defined pixel-to-pixel connections that enable effective use of information available in the image and the trimap. We control the information flow from the known-opacity regions into the unknown region, as well as within the unknown region itself, by utilizing multiple definitions of pixel affinities. This way we achieve significant improvements on matte quality near challenging regions of the foreground object. Among other forms of information flow, we introduce color-mixture flow, which builds upon local linear embedding and effectively encapsulates the relation between different pixel opacities. Our resulting novel linear system formulation can be solved in closed-form and is robust against several fundamental challenges in natural matting such as holes and remote intricate structures. While our method is primarily designed as a standalone natural matting tool, we show that it can also be used for regularizing mattes obtained by various sampling-based methods. Our evaluation using the public alpha matting benchmark suggests a significant performance improvement over the state-of-the-art.

Cite

Text

Aksoy et al. "Designing Effective Inter-Pixel Information Flow for Natural Image Matting." Conference on Computer Vision and Pattern Recognition, 2017. doi:10.1109/CVPR.2017.32

Markdown

[Aksoy et al. "Designing Effective Inter-Pixel Information Flow for Natural Image Matting." Conference on Computer Vision and Pattern Recognition, 2017.](https://mlanthology.org/cvpr/2017/aksoy2017cvpr-designing/) doi:10.1109/CVPR.2017.32

BibTeX

@inproceedings{aksoy2017cvpr-designing,
  title     = {{Designing Effective Inter-Pixel Information Flow for Natural Image Matting}},
  author    = {Aksoy, Yagiz and Aydin, Tunc Ozan and Pollefeys, Marc},
  booktitle = {Conference on Computer Vision and Pattern Recognition},
  year      = {2017},
  doi       = {10.1109/CVPR.2017.32},
  url       = {https://mlanthology.org/cvpr/2017/aksoy2017cvpr-designing/}
}