A Joint Speaker-Listener-Reinforcer Model for Referring Expressions

Abstract

Referring expressions are natural language constructions used to identify particular objects within a scene. In this paper, we propose a unified framework for the tasks of referring expression comprehension and generation. Our model is composed of three modules: speaker, listener, and reinforcer. The speaker generates referring expressions, the listener comprehends referring expressions, and the reinforcer introduces a reward function to guide sampling of more discriminative expressions. The listener-speaker modules are trained jointly in an end-to-end learning framework, allowing the modules to be aware of one another during learning while also benefiting from the discriminative reinforcer's feedback. We demonstrate that this unified framework and training achieves state-of-the-art results for both comprehension and generation on three referring expression datasets. Project and demo page: https://vision.cs.unc.edu/refer

Cite

Text

Yu et al. "A Joint Speaker-Listener-Reinforcer Model for Referring Expressions." Conference on Computer Vision and Pattern Recognition, 2017. doi:10.1109/CVPR.2017.375

Markdown

[Yu et al. "A Joint Speaker-Listener-Reinforcer Model for Referring Expressions." Conference on Computer Vision and Pattern Recognition, 2017.](https://mlanthology.org/cvpr/2017/yu2017cvpr-joint/) doi:10.1109/CVPR.2017.375

BibTeX

@inproceedings{yu2017cvpr-joint,
  title     = {{A Joint Speaker-Listener-Reinforcer Model for Referring Expressions}},
  author    = {Yu, Licheng and Tan, Hao and Bansal, Mohit and Berg, Tamara L.},
  booktitle = {Conference on Computer Vision and Pattern Recognition},
  year      = {2017},
  doi       = {10.1109/CVPR.2017.375},
  url       = {https://mlanthology.org/cvpr/2017/yu2017cvpr-joint/}
}