Auto-Exposure Fusion for Single-Image Shadow Removal
Abstract
Shadow removal is still a challenging task due to its inherent background-dependent and spatial-variant properties, leading to unknown and diverse shadow patterns. Even powerful deep neural networks could hardly recover traceless shadow-removed background. This paper proposes a new solution for this task by formulating it as an exposure fusion problem to address the challenges. Intuitively, we first estimate multiple over-exposure images w.r.t. the input image to let the shadow regions in these images have the same color with shadow-free areas in the input image. Then, we fuse the original input with the over-exposure images to generate the final shadow-free counterpart. Nevertheless, the spatial-variant property of the shadow requires the fusion to be sufficiently `smart', that is, it should automatically select proper over-exposure pixels from different images to make the final output natural. To address this challenge, we propose the shadow-aware FusionNet that takes the shadow image as input to generate fusion weight maps across all the over-exposure images. Moreover, we propose the boundary-aware RefineNet to eliminate the remaining shadow trace further. We conduct extensive experiments on the ISTD, ISTD+, and SRD datasets to validate our method's effectiveness and show better performance in shadow regions and comparable performance in non-shadow regions over the state-of-the-art methods. We release the code in https://github.com/tsingqguo/exposure-fusion-shadow-removal.
Cite
Text
Fu et al. "Auto-Exposure Fusion for Single-Image Shadow Removal." Conference on Computer Vision and Pattern Recognition, 2021. doi:10.1109/CVPR46437.2021.01043Markdown
[Fu et al. "Auto-Exposure Fusion for Single-Image Shadow Removal." Conference on Computer Vision and Pattern Recognition, 2021.](https://mlanthology.org/cvpr/2021/fu2021cvpr-autoexposure/) doi:10.1109/CVPR46437.2021.01043BibTeX
@inproceedings{fu2021cvpr-autoexposure,
title = {{Auto-Exposure Fusion for Single-Image Shadow Removal}},
author = {Fu, Lan and Zhou, Changqing and Guo, Qing and Juefei-Xu, Felix and Yu, Hongkai and Feng, Wei and Liu, Yang and Wang, Song},
booktitle = {Conference on Computer Vision and Pattern Recognition},
year = {2021},
pages = {10571-10580},
doi = {10.1109/CVPR46437.2021.01043},
url = {https://mlanthology.org/cvpr/2021/fu2021cvpr-autoexposure/}
}