Dense Relation Distillation with Context-Aware Aggregation for Few-Shot Object Detection
Abstract
Conventional deep learning based methods for object detection require a large amount of bounding box annotations for training, which is expensive to obtain such high quality annotated data. Few-shot object detection, which learns to adapt to novel classes with only a few annotated examples, is very challenging since the fine-grained feature of novel object can be easily overlooked with only a few data available. In this work, aiming to fully exploit features of annotated novel object and capture fine-grained features of query object, we propose Dense Relation Distillation with Context-aware Aggregation (DCNet) to tackle the few-shot detection problem. Built on the meta-learning based framework, Dense Relation Distillation module targets at fully exploiting support features, where support features and query feature are densely matched, covering all spatial locations in a feed-forward fashion. The abundant usage of the guidance information endows model the capability to handle common challenges such as appearance changes and occlusions. Moreover, to better capture scale-aware features, Context-aware Aggregation module adaptively harnesses features from different scales for a more comprehensive feature representation. Extensive experiments illustrate that our proposed approach achieves state-of-the-art results on PASCAL VOC and MS COCO datasets. Code will be made available at https://github.com/hzhupku/DCNet.
Cite
Text
Hu et al. "Dense Relation Distillation with Context-Aware Aggregation for Few-Shot Object Detection." Conference on Computer Vision and Pattern Recognition, 2021. doi:10.1109/CVPR46437.2021.01005Markdown
[Hu et al. "Dense Relation Distillation with Context-Aware Aggregation for Few-Shot Object Detection." Conference on Computer Vision and Pattern Recognition, 2021.](https://mlanthology.org/cvpr/2021/hu2021cvpr-dense/) doi:10.1109/CVPR46437.2021.01005BibTeX
@inproceedings{hu2021cvpr-dense,
title = {{Dense Relation Distillation with Context-Aware Aggregation for Few-Shot Object Detection}},
author = {Hu, Hanzhe and Bai, Shuai and Li, Aoxue and Cui, Jinshi and Wang, Liwei},
booktitle = {Conference on Computer Vision and Pattern Recognition},
year = {2021},
pages = {10185-10194},
doi = {10.1109/CVPR46437.2021.01005},
url = {https://mlanthology.org/cvpr/2021/hu2021cvpr-dense/}
}