PhD Learning: Learning with Pompeiu-Hausdorff Distances for Video-Based Vehicle Re-Identification

Abstract

Vehicle re-identification (re-ID) is of great significance to urban operation, management, security and has gained more attention in recent years. However, two critical challenges in vehicle re-ID have primarily been underestimated, i.e., 1): how to make full use of raw data, and 2): how to learn a robust re-ID model with noisy data. In this paper, we first create a video vehicle re-ID evaluation benchmark called VVeRI-901 and verify the performance of video-based re-ID is far better than static image-based one. Then we propose a new Pompeiu-hausdorff distance (PhD) learning method for video-to-video matching. It can alleviate the data noise problem caused by the occlusion in videos and thus improve re-ID performance significantly. Extensive empirical results on video-based vehicle and person re-ID datasets, i.e., VVeRI-901, MARS and PRID2011, demonstrate the superiority of the proposed method. The source code of our proposed method is available at https://github.com/emdata-ailab/PhD-Learning.

Cite

Text

Zhao et al. "PhD Learning: Learning with Pompeiu-Hausdorff Distances for Video-Based Vehicle Re-Identification." Conference on Computer Vision and Pattern Recognition, 2021. doi:10.1109/CVPR46437.2021.00226

Markdown

[Zhao et al. "PhD Learning: Learning with Pompeiu-Hausdorff Distances for Video-Based Vehicle Re-Identification." Conference on Computer Vision and Pattern Recognition, 2021.](https://mlanthology.org/cvpr/2021/zhao2021cvpr-phd/) doi:10.1109/CVPR46437.2021.00226

BibTeX

@inproceedings{zhao2021cvpr-phd,
  title     = {{PhD Learning: Learning with Pompeiu-Hausdorff Distances for Video-Based Vehicle Re-Identification}},
  author    = {Zhao, Jianan and Qi, Fengliang and Ren, Guangyu and Xu, Lin},
  booktitle = {Conference on Computer Vision and Pattern Recognition},
  year      = {2021},
  pages     = {2225-2235},
  doi       = {10.1109/CVPR46437.2021.00226},
  url       = {https://mlanthology.org/cvpr/2021/zhao2021cvpr-phd/}
}