A Sampling-Based Approach for Efficient Clustering in Large Datasets

Abstract

We propose a simple and efficient clustering method for high-dimensional data with a large number of clusters. Our algorithm achieves high-performance by evaluating distances of datapoints with a subset of the cluster centres. Our contribution is substantially more efficient than k-means as it does not require an all to all comparison of data points and clusters. We show that the optimal solutions of our approximation are the same as in the exact solution. However, our approach is considerably more efficient at extracting these clusters compared to the state-of-the-art. We compare our approximation with the exact k-means and alternative approximation approaches on a series of standardised clustering tasks. For the evaluation, we consider the algorithmic complexity, including the number of operations until convergence, and the stability of the results. An efficient implementation of the algorithm is provided in online.

Cite

Text

Exarchakis et al. "A Sampling-Based Approach for Efficient Clustering in Large Datasets." Conference on Computer Vision and Pattern Recognition, 2022. doi:10.1109/CVPR52688.2022.01208

Markdown

[Exarchakis et al. "A Sampling-Based Approach for Efficient Clustering in Large Datasets." Conference on Computer Vision and Pattern Recognition, 2022.](https://mlanthology.org/cvpr/2022/exarchakis2022cvpr-samplingbased/) doi:10.1109/CVPR52688.2022.01208

BibTeX

@inproceedings{exarchakis2022cvpr-samplingbased,
  title     = {{A Sampling-Based Approach for Efficient Clustering in Large Datasets}},
  author    = {Exarchakis, Georgios and Oubari, Omar and Lenz, Gregor},
  booktitle = {Conference on Computer Vision and Pattern Recognition},
  year      = {2022},
  pages     = {12403-12412},
  doi       = {10.1109/CVPR52688.2022.01208},
  url       = {https://mlanthology.org/cvpr/2022/exarchakis2022cvpr-samplingbased/}
}