Non-Iterative Recovery from Nonlinear Observations Using Generative Models
Abstract
In this paper, we aim to estimate the direction of an underlying signal from its nonlinear observations following the semi-parametric single index model (SIM). Unlike for conventional compressed sensing where the signal is assumed to be sparse, we assume that the signal lies in the range of an L-Lipschitz continuous generative model with bounded k-dimensional inputs. This is mainly motivated by the tremendous success of deep generative models in various real applications. Our reconstruction method is non-iterative (though approximating the projection step may require an iterative procedure) and highly efficient, and it is shown to attain the near-optimal statistical rate of order \sqrt (k \log L)/m , where m is the number of measurements. We consider two specific instances of the SIM, namely noisy 1-bit and cubic measurement models, and perform experiments on image datasets to demonstrate the efficacy of our method. In particular, for the noisy 1-bit measurement model, we show that our non-iterative method significantly outperforms a state-of-the-art iterative method in terms of both accuracy and efficiency.
Cite
Text
Liu and Liu. "Non-Iterative Recovery from Nonlinear Observations Using Generative Models." Conference on Computer Vision and Pattern Recognition, 2022. doi:10.1109/CVPR52688.2022.00033Markdown
[Liu and Liu. "Non-Iterative Recovery from Nonlinear Observations Using Generative Models." Conference on Computer Vision and Pattern Recognition, 2022.](https://mlanthology.org/cvpr/2022/liu2022cvpr-noniterative/) doi:10.1109/CVPR52688.2022.00033BibTeX
@inproceedings{liu2022cvpr-noniterative,
title = {{Non-Iterative Recovery from Nonlinear Observations Using Generative Models}},
author = {Liu, Jiulong and Liu, Zhaoqiang},
booktitle = {Conference on Computer Vision and Pattern Recognition},
year = {2022},
pages = {233-243},
doi = {10.1109/CVPR52688.2022.00033},
url = {https://mlanthology.org/cvpr/2022/liu2022cvpr-noniterative/}
}