Multi-Objective Diverse Human Motion Prediction with Knowledge Distillation

Abstract

Obtaining accurate and diverse human motion prediction is essential to many industrial applications, especially robotics and autonomous driving. Recent research has explored several techniques to enhance diversity and maintain the accuracy of human motion prediction at the same time. However, most of them need to define a combined loss, such as the weighted sum of accuracy loss and diversity loss, and then decide their weights as hyperparameters before training. In this work, we aim to design a prediction framework that can balance the accuracy sampling and diversity sampling during the testing phase. In order to achieve this target, we propose a multi-objective conditional variational inference prediction model. We also propose a short-term oracle to encourage the prediction framework to explore more diverse future motions. We evaluate the performance of our proposed approach on two standard human motion datasets. The experiment results show that our approach is effective and on a par with state-of-the-art performance in terms of accuracy and diversity.

Cite

Text

Ma et al. "Multi-Objective Diverse Human Motion Prediction with Knowledge Distillation." Conference on Computer Vision and Pattern Recognition, 2022. doi:10.1109/CVPR52688.2022.00799

Markdown

[Ma et al. "Multi-Objective Diverse Human Motion Prediction with Knowledge Distillation." Conference on Computer Vision and Pattern Recognition, 2022.](https://mlanthology.org/cvpr/2022/ma2022cvpr-multiobjective/) doi:10.1109/CVPR52688.2022.00799

BibTeX

@inproceedings{ma2022cvpr-multiobjective,
  title     = {{Multi-Objective Diverse Human Motion Prediction with Knowledge Distillation}},
  author    = {Ma, Hengbo and Li, Jiachen and Hosseini, Ramtin and Tomizuka, Masayoshi and Choi, Chiho},
  booktitle = {Conference on Computer Vision and Pattern Recognition},
  year      = {2022},
  pages     = {8161-8171},
  doi       = {10.1109/CVPR52688.2022.00799},
  url       = {https://mlanthology.org/cvpr/2022/ma2022cvpr-multiobjective/}
}