CiaoSR: Continuous Implicit Attention-in-Attention Network for Arbitrary-Scale Image Super-Resolution
Abstract
Learning continuous image representations is recently gaining popularity for image super-resolution (SR) because of its ability to reconstruct high-resolution images with arbitrary scales from low-resolution inputs. Existing methods mostly ensemble nearby features to predict the new pixel at any queried coordinate in the SR image. Such a local ensemble suffers from some limitations: i) it has no learnable parameters and it neglects the similarity of the visual features; ii) it has a limited receptive field and cannot ensemble relevant features in a large field which are important in an image. To address these issues, this paper proposes a continuous implicit attention-in-attention network, called CiaoSR. We explicitly design an implicit attention network to learn the ensemble weights for the nearby local features. Furthermore, we embed a scale-aware attention in this implicit attention network to exploit additional non-local information. Extensive experiments on benchmark datasets demonstrate CiaoSR significantly outperforms the existing single image SR methods with the same backbone. In addition, CiaoSR also achieves the state-of-the-art performance on the arbitrary-scale SR task. The effectiveness of the method is also demonstrated on the real-world SR setting. More importantly, CiaoSR can be flexibly integrated into any backbone to improve the SR performance.
Cite
Text
Cao et al. "CiaoSR: Continuous Implicit Attention-in-Attention Network for Arbitrary-Scale Image Super-Resolution." Conference on Computer Vision and Pattern Recognition, 2023. doi:10.1109/CVPR52729.2023.00179Markdown
[Cao et al. "CiaoSR: Continuous Implicit Attention-in-Attention Network for Arbitrary-Scale Image Super-Resolution." Conference on Computer Vision and Pattern Recognition, 2023.](https://mlanthology.org/cvpr/2023/cao2023cvpr-ciaosr/) doi:10.1109/CVPR52729.2023.00179BibTeX
@inproceedings{cao2023cvpr-ciaosr,
title = {{CiaoSR: Continuous Implicit Attention-in-Attention Network for Arbitrary-Scale Image Super-Resolution}},
author = {Cao, Jiezhang and Wang, Qin and Xian, Yongqin and Li, Yawei and Ni, Bingbing and Pi, Zhiming and Zhang, Kai and Zhang, Yulun and Timofte, Radu and Van Gool, Luc},
booktitle = {Conference on Computer Vision and Pattern Recognition},
year = {2023},
pages = {1796-1807},
doi = {10.1109/CVPR52729.2023.00179},
url = {https://mlanthology.org/cvpr/2023/cao2023cvpr-ciaosr/}
}