Feature Shrinkage Pyramid for Camouflaged Object Detection with Transformers

Abstract

Vision transformers have recently shown strong global context modeling capabilities in camouflaged object detection. However, they suffer from two major limitations: less effective locality modeling and insufficient feature aggregation in decoders, which are not conducive to camouflaged object detection that explores subtle cues from indistinguishable backgrounds. To address these issues, in this paper, we propose a novel transformer-based Feature Shrinkage Pyramid Network (FSPNet), which aims to hierarchically decode locality-enhanced neighboring transformer features through progressive shrinking for camouflaged object detection. Specifically, we propose a non-local token enhancement module (NL-TEM) that employs the non-local mechanism to interact neighboring tokens and explore graph-based high-order relations within tokens to enhance local representations of transformers. Moreover, we design a feature shrinkage decoder (FSD) with adjacent interaction modules (AIM), which progressively aggregates adjacent transformer features through a layer-by-layer shrinkage pyramid to accumulate imperceptible but effective cues as much as possible for object information decoding. Extensive quantitative and qualitative experiments demonstrate that the proposed model significantly outperforms the existing 24 competitors on three challenging COD benchmark datasets under six widely-used evaluation metrics. Our code is publicly available at https://github.com/ZhouHuang23/FSPNet.

Cite

Text

Huang et al. "Feature Shrinkage Pyramid for Camouflaged Object Detection with Transformers." Conference on Computer Vision and Pattern Recognition, 2023. doi:10.1109/CVPR52729.2023.00538

Markdown

[Huang et al. "Feature Shrinkage Pyramid for Camouflaged Object Detection with Transformers." Conference on Computer Vision and Pattern Recognition, 2023.](https://mlanthology.org/cvpr/2023/huang2023cvpr-feature/) doi:10.1109/CVPR52729.2023.00538

BibTeX

@inproceedings{huang2023cvpr-feature,
  title     = {{Feature Shrinkage Pyramid for Camouflaged Object Detection with Transformers}},
  author    = {Huang, Zhou and Dai, Hang and Xiang, Tian-Zhu and Wang, Shuo and Chen, Huai-Xin and Qin, Jie and Xiong, Huan},
  booktitle = {Conference on Computer Vision and Pattern Recognition},
  year      = {2023},
  pages     = {5557-5566},
  doi       = {10.1109/CVPR52729.2023.00538},
  url       = {https://mlanthology.org/cvpr/2023/huang2023cvpr-feature/}
}