3D-Aware Multi-Class Image-to-Image Translation with NeRFs
Abstract
Recent advances in 3D-aware generative models (3D-aware GANs) combined with Neural Radiance Fields (NeRF) have achieved impressive results. However no prior works investigate 3D-aware GANs for 3D consistent multi-class image-to-image (3D-aware I2I) translation. Naively using 2D-I2I translation methods suffers from unrealistic shape/identity change. To perform 3D-aware multi-class I2I translation, we decouple this learning process into a multi-class 3D-aware GAN step and a 3D-aware I2I translation step. In the first step, we propose two novel techniques: a new conditional architecture and an effective training strategy. In the second step, based on the well-trained multi-class 3D-aware GAN architecture, that preserves view-consistency, we construct a 3D-aware I2I translation system. To further reduce the view-consistency problems, we propose several new techniques, including a U-net-like adaptor network design, a hierarchical representation constrain and a relative regularization loss. In extensive experiments on two datasets, quantitative and qualitative results demonstrate that we successfully perform 3D-aware I2I translation with multi-view consistency.
Cite
Text
Li et al. "3D-Aware Multi-Class Image-to-Image Translation with NeRFs." Conference on Computer Vision and Pattern Recognition, 2023. doi:10.1109/CVPR52729.2023.01217Markdown
[Li et al. "3D-Aware Multi-Class Image-to-Image Translation with NeRFs." Conference on Computer Vision and Pattern Recognition, 2023.](https://mlanthology.org/cvpr/2023/li2023cvpr-3daware-a/) doi:10.1109/CVPR52729.2023.01217BibTeX
@inproceedings{li2023cvpr-3daware-a,
title = {{3D-Aware Multi-Class Image-to-Image Translation with NeRFs}},
author = {Li, Senmao and van de Weijer, Joost and Wang, Yaxing and Khan, Fahad Shahbaz and Liu, Meiqin and Yang, Jian},
booktitle = {Conference on Computer Vision and Pattern Recognition},
year = {2023},
pages = {12652-12662},
doi = {10.1109/CVPR52729.2023.01217},
url = {https://mlanthology.org/cvpr/2023/li2023cvpr-3daware-a/}
}