Proximal Splitting Adversarial Attack for Semantic Segmentation
Abstract
Classification has been the focal point of research on adversarial attacks, but only a few works investigate methods suited to denser prediction tasks, such as semantic segmentation. The methods proposed in these works do not accurately solve the adversarial segmentation problem and, therefore, overestimate the size of the perturbations required to fool models. Here, we propose a white-box attack for these models based on a proximal splitting to produce adversarial perturbations with much smaller l_infinity norms. Our attack can handle large numbers of constraints within a nonconvex minimization framework via an Augmented Lagrangian approach, coupled with adaptive constraint scaling and masking strategies. We demonstrate that our attack significantly outperforms previously proposed ones, as well as classification attacks that we adapted for segmentation, providing a first comprehensive benchmark for this dense task.
Cite
Text
Rony et al. "Proximal Splitting Adversarial Attack for Semantic Segmentation." Conference on Computer Vision and Pattern Recognition, 2023. doi:10.1109/CVPR52729.2023.01966Markdown
[Rony et al. "Proximal Splitting Adversarial Attack for Semantic Segmentation." Conference on Computer Vision and Pattern Recognition, 2023.](https://mlanthology.org/cvpr/2023/rony2023cvpr-proximal/) doi:10.1109/CVPR52729.2023.01966BibTeX
@inproceedings{rony2023cvpr-proximal,
title = {{Proximal Splitting Adversarial Attack for Semantic Segmentation}},
author = {Rony, Jérôme and Pesquet, Jean-Christophe and Ayed, Ismail Ben},
booktitle = {Conference on Computer Vision and Pattern Recognition},
year = {2023},
pages = {20524-20533},
doi = {10.1109/CVPR52729.2023.01966},
url = {https://mlanthology.org/cvpr/2023/rony2023cvpr-proximal/}
}