PEFAT: Boosting Semi-Supervised Medical Image Classification via Pseudo-Loss Estimation and Feature Adversarial Training
Abstract
Pseudo-labeling approaches have been proven beneficial for semi-supervised learning (SSL) schemes in computer vision and medical imaging. Most works are dedicated to finding samples with high-confidence pseudo-labels from the perspective of model predicted probability. Whereas this way may lead to the inclusion of incorrectly pseudo-labeled data if the threshold is not carefully adjusted. In addition, low-confidence probability samples are frequently disregarded and not employed to their full potential. In this paper, we propose a novel Pseudo-loss Estimation and Feature Adversarial Training semi-supervised framework, termed as PEFAT, to boost the performance of multi-class and multi-label medical image classification from the point of loss distribution modeling and adversarial training. Specifically, we develop a trustworthy data selection scheme to split a high-quality pseudo-labeled set, inspired by the dividable pseudo-loss assumption that clean data tend to show lower loss while noise data is the opposite. Instead of directly discarding these samples with low-quality pseudo-labels, we present a novel regularization approach to learn discriminate information from them via injecting adversarial noises at the feature-level to smooth the decision boundary. Experimental results on three medical and two natural image benchmarks validate that our PEFAT can achieve a promising performance and surpass other state-of-the-art methods. The code is available at https://github.com/maxwell0027/PEFAT.
Cite
Text
Zeng et al. "PEFAT: Boosting Semi-Supervised Medical Image Classification via Pseudo-Loss Estimation and Feature Adversarial Training." Conference on Computer Vision and Pattern Recognition, 2023. doi:10.1109/CVPR52729.2023.01504Markdown
[Zeng et al. "PEFAT: Boosting Semi-Supervised Medical Image Classification via Pseudo-Loss Estimation and Feature Adversarial Training." Conference on Computer Vision and Pattern Recognition, 2023.](https://mlanthology.org/cvpr/2023/zeng2023cvpr-pefat/) doi:10.1109/CVPR52729.2023.01504BibTeX
@inproceedings{zeng2023cvpr-pefat,
title = {{PEFAT: Boosting Semi-Supervised Medical Image Classification via Pseudo-Loss Estimation and Feature Adversarial Training}},
author = {Zeng, Qingjie and Xie, Yutong and Lu, Zilin and Xia, Yong},
booktitle = {Conference on Computer Vision and Pattern Recognition},
year = {2023},
pages = {15671-15680},
doi = {10.1109/CVPR52729.2023.01504},
url = {https://mlanthology.org/cvpr/2023/zeng2023cvpr-pefat/}
}