DeSTSeg: Segmentation Guided Denoising Student-Teacher for Anomaly Detection

Abstract

Visual anomaly detection, an important problem in computer vision, is usually formulated as a one-class classification and segmentation task. The student-teacher (S-T) framework has proved to be effective in solving this challenge. However, previous works based on S-T only empirically applied constraints on normal data and fused multi-level information. In this study, we propose an improved model called DeSTSeg, which integrates a pre-trained teacher network, a denoising student encoder-decoder, and a segmentation network into one framework. First, to strengthen the constraints on anomalous data, we introduce a denoising procedure that allows the student network to learn more robust representations. From synthetically corrupted normal images, we train the student network to match the teacher network feature of the same images without corruption. Second, to fuse the multi-level S-T features adaptively, we train a segmentation network with rich supervision from synthetic anomaly masks, achieving a substantial performance improvement. Experiments on the industrial inspection benchmark dataset demonstrate that our method achieves state-of-the-art performance, 98.6% on image-level AUC, 75.8% on pixel-level average precision, and 76.4% on instance-level average precision.

Cite

Text

Zhang et al. "DeSTSeg: Segmentation Guided Denoising Student-Teacher for Anomaly Detection." Conference on Computer Vision and Pattern Recognition, 2023. doi:10.1109/CVPR52729.2023.00381

Markdown

[Zhang et al. "DeSTSeg: Segmentation Guided Denoising Student-Teacher for Anomaly Detection." Conference on Computer Vision and Pattern Recognition, 2023.](https://mlanthology.org/cvpr/2023/zhang2023cvpr-destseg/) doi:10.1109/CVPR52729.2023.00381

BibTeX

@inproceedings{zhang2023cvpr-destseg,
  title     = {{DeSTSeg: Segmentation Guided Denoising Student-Teacher for Anomaly Detection}},
  author    = {Zhang, Xuan and Li, Shiyu and Li, Xi and Huang, Ping and Shan, Jiulong and Chen, Ting},
  booktitle = {Conference on Computer Vision and Pattern Recognition},
  year      = {2023},
  pages     = {3914-3923},
  doi       = {10.1109/CVPR52729.2023.00381},
  url       = {https://mlanthology.org/cvpr/2023/zhang2023cvpr-destseg/}
}