Lookahead Diffusion Probabilistic Models for Refining Mean Estimation

Abstract

We propose lookahead diffusion probabilistic models (LA-DPMs) to exploit the correlation in the outputs of the deep neural networks (DNNs) over subsequent timesteps in diffusion probabilistic models (DPMs) to refine the mean estimation of the conditional Gaussian distributions in the backward process. A typical DPM first obtains an estimate of the original data sample x by feeding the most recent state z_i and index i into the DNN model and then computes the mean vector of the conditional Gaussian distribution for z_ i-1 . We propose to calculate a more accurate estimate for x by performing extrapolation on the two estimates of x that are obtained by feeding (z_ i+1 , i+1) and (z_i, i) into the DNN model. The extrapolation can be easily integrated into the backward process of existing DPMs by introducing an additional connection over two consecutive timesteps, and fine-tuning is not required. Extensive experiments showed that plugging in the additional connection into DDPM, DDIM, DEIS, S-PNDM, and high-order DPM-Solvers leads to a significant performance gain in terms of Frechet inception distance (FID) score. Our implementation is available at https://github.com/guoqiangzhang-x/LA-DPM.

Cite

Text

Zhang et al. "Lookahead Diffusion Probabilistic Models for Refining Mean Estimation." Conference on Computer Vision and Pattern Recognition, 2023. doi:10.1109/CVPR52729.2023.00143

Markdown

[Zhang et al. "Lookahead Diffusion Probabilistic Models for Refining Mean Estimation." Conference on Computer Vision and Pattern Recognition, 2023.](https://mlanthology.org/cvpr/2023/zhang2023cvpr-lookahead/) doi:10.1109/CVPR52729.2023.00143

BibTeX

@inproceedings{zhang2023cvpr-lookahead,
  title     = {{Lookahead Diffusion Probabilistic Models for Refining Mean Estimation}},
  author    = {Zhang, Guoqiang and Niwa, Kenta and Kleijn, W. Bastiaan},
  booktitle = {Conference on Computer Vision and Pattern Recognition},
  year      = {2023},
  pages     = {1421-1429},
  doi       = {10.1109/CVPR52729.2023.00143},
  url       = {https://mlanthology.org/cvpr/2023/zhang2023cvpr-lookahead/}
}