EfficientDreamer: High-Fidelity and Robust 3D Creation via Orthogonal-View Diffusion Priors

Abstract

While image diffusion models have made significant progress in text-driven 3D content creation they often fail to accurately capture the intended meaning of text prompts especially for view information. This limitation leads to the Janus problem where multi-faced 3D models are generated under the guidance of such diffusion models. In this paper we propose a robust high-quality 3D content generation pipeline by exploiting orthogonal-view image guidance. First we introduce a novel 2D diffusion model that generates an image consisting of four orthogonal-view sub-images based on the given text prompt. Then the 3D content is created using this diffusion model. Notably the generated orthogonal-view image provides strong geometric structure priors and thus improves 3D consistency. As a result it effectively resolves the Janus problem and significantly enhances the quality of 3D content creation. Additionally we present a 3D synthesis fusion network that can further improve the details of the generated 3D contents. Both quantitative and qualitative evaluations demonstrate that our method surpasses previous text-to-3D techniques. Project page: https://efficientdreamer.github.io.

Cite

Text

Hu et al. "EfficientDreamer: High-Fidelity and Robust 3D Creation via Orthogonal-View Diffusion Priors." Conference on Computer Vision and Pattern Recognition, 2024.

Markdown

[Hu et al. "EfficientDreamer: High-Fidelity and Robust 3D Creation via Orthogonal-View Diffusion Priors." Conference on Computer Vision and Pattern Recognition, 2024.](https://mlanthology.org/cvpr/2024/hu2024cvpr-efficientdreamer/)

BibTeX

@inproceedings{hu2024cvpr-efficientdreamer,
  title     = {{EfficientDreamer: High-Fidelity and Robust 3D Creation via Orthogonal-View Diffusion Priors}},
  author    = {Hu, Zhipeng and Zhao, Minda and Zhao, Chaoyi and Liang, Xinyue and Li, Lincheng and Zhao, Zeng and Fan, Changjie and Zhou, Xiaowei and Yu, Xin},
  booktitle = {Conference on Computer Vision and Pattern Recognition},
  year      = {2024},
  pages     = {4949-4958},
  url       = {https://mlanthology.org/cvpr/2024/hu2024cvpr-efficientdreamer/}
}