CPLIP: Zero-Shot Learning for Histopathology with Comprehensive Vision-Language Alignment

Abstract

This paper proposes Comprehensive Pathology Language Image Pre-training (CPLIP) a new unsupervised technique designed to enhance the alignment of images and text in histopathology for tasks such as classification and segmentation. This methodology enriches vision language models by leveraging extensive data without needing ground truth annotations. CPLIP involves constructing a pathology-specific dictionary generating textual descriptions for images using language models and retrieving relevant images for each text snippet via a pre-trained model. The model is then fine-tuned using a many-to-many contrastive learning method to align complex interrelated concepts across both modalities. Evaluated across multiple histopathology tasks CPLIP shows notable improvements in zero-shot learning scenarios outperforming existing methods in both interpretability and robustness and setting a higher benchmark for the application of vision-language models in the field. To encourage further research and replication the code for CPLIP is available on GitHubat https://cplip.github.io/

Cite

Text

Javed et al. "CPLIP: Zero-Shot Learning for Histopathology with Comprehensive Vision-Language Alignment." Conference on Computer Vision and Pattern Recognition, 2024. doi:10.1109/CVPR52733.2024.01088

Markdown

[Javed et al. "CPLIP: Zero-Shot Learning for Histopathology with Comprehensive Vision-Language Alignment." Conference on Computer Vision and Pattern Recognition, 2024.](https://mlanthology.org/cvpr/2024/javed2024cvpr-cplip/) doi:10.1109/CVPR52733.2024.01088

BibTeX

@inproceedings{javed2024cvpr-cplip,
  title     = {{CPLIP: Zero-Shot Learning for Histopathology with Comprehensive Vision-Language Alignment}},
  author    = {Javed, Sajid and Mahmood, Arif and Ganapathi, Iyyakutti Iyappan and Dharejo, Fayaz Ali and Werghi, Naoufel and Bennamoun, Mohammed},
  booktitle = {Conference on Computer Vision and Pattern Recognition},
  year      = {2024},
  pages     = {11450-11459},
  doi       = {10.1109/CVPR52733.2024.01088},
  url       = {https://mlanthology.org/cvpr/2024/javed2024cvpr-cplip/}
}