Modality-Agnostic Structural Image Representation Learning for Deformable Multi-Modality Medical Image Registration

Abstract

Establishing dense anatomical correspondence across distinct imaging modalities is a foundational yet challenging procedure for numerous medical image analysis studies and image-guided radiotherapy. Existing multi-modality image registration algorithms rely on statistical-based similarity measures or local structural image representations. However the former is sensitive to locally varying noise while the latter is not discriminative enough to cope with complex anatomical structures in multimodal scans causing ambiguity in determining the anatomical correspondence across scans with different modalities. In this paper we propose a modality-agnostic structural representation learning method which leverages Deep Neighbourhood Self-similarity (DNS) and anatomy-aware contrastive learning to learn discriminative and contrast-invariance deep structural image representations (DSIR) without the need for anatomical delineations or pre-aligned training images. We evaluate our method on multiphase CT abdomen MR-CT and brain MR T1w-T2w registration. Comprehensive results demonstrate that our method is superior to the conventional local structural representation and statistical-based similarity measures in terms of discriminability and accuracy.

Cite

Text

Mok et al. "Modality-Agnostic Structural Image Representation Learning for Deformable Multi-Modality Medical Image Registration." Conference on Computer Vision and Pattern Recognition, 2024. doi:10.1109/CVPR52733.2024.01066

Markdown

[Mok et al. "Modality-Agnostic Structural Image Representation Learning for Deformable Multi-Modality Medical Image Registration." Conference on Computer Vision and Pattern Recognition, 2024.](https://mlanthology.org/cvpr/2024/mok2024cvpr-modalityagnostic/) doi:10.1109/CVPR52733.2024.01066

BibTeX

@inproceedings{mok2024cvpr-modalityagnostic,
  title     = {{Modality-Agnostic Structural Image Representation Learning for Deformable Multi-Modality Medical Image Registration}},
  author    = {Mok, Tony C. W. and Li, Zi and Bai, Yunhao and Zhang, Jianpeng and Liu, Wei and Zhou, Yan-Jie and Yan, Ke and Jin, Dakai and Shi, Yu and Yin, Xiaoli and Lu, Le and Zhang, Ling},
  booktitle = {Conference on Computer Vision and Pattern Recognition},
  year      = {2024},
  pages     = {11215-11225},
  doi       = {10.1109/CVPR52733.2024.01066},
  url       = {https://mlanthology.org/cvpr/2024/mok2024cvpr-modalityagnostic/}
}