Misalignment-Robust Frequency Distribution Loss for Image Transformation

Abstract

This paper aims to address a common challenge in deep learning-based image transformation methods such as image enhancement and super-resolution which heavily rely on precisely aligned paired datasets with pixel-level alignments. However creating precisely aligned paired images presents significant challenges and hinders the advancement of methods trained on such data. To overcome this challenge this paper introduces a novel and simple Frequency Distribution Loss (FDL) for computing distribution distance within the frequency domain. Specifically we transform image features into the frequency domain using Discrete Fourier Transformation (DFT). Subsequently frequency components (amplitude and phase) are processed separately to form the FDL loss function. Our method is empirically proven effective as a training constraint due to the thoughtful utilization of global information in the frequency domain. Extensive experimental evaluations focusing on image enhancement and super-resolution tasks demonstrate that FDL outperforms existing misalignment-robust loss functions. Furthermore we explore the potential of our FDL for image style transfer that relies solely on completely misaligned data. Our code is available at: https://github.com/eezkni/FDL

Cite

Text

Ni et al. "Misalignment-Robust Frequency Distribution Loss for Image Transformation." Conference on Computer Vision and Pattern Recognition, 2024. doi:10.1109/CVPR52733.2024.00281

Markdown

[Ni et al. "Misalignment-Robust Frequency Distribution Loss for Image Transformation." Conference on Computer Vision and Pattern Recognition, 2024.](https://mlanthology.org/cvpr/2024/ni2024cvpr-misalignmentrobust/) doi:10.1109/CVPR52733.2024.00281

BibTeX

@inproceedings{ni2024cvpr-misalignmentrobust,
  title     = {{Misalignment-Robust Frequency Distribution Loss for Image Transformation}},
  author    = {Ni, Zhangkai and Wu, Juncheng and Wang, Zian and Yang, Wenhan and Wang, Hanli and Ma, Lin},
  booktitle = {Conference on Computer Vision and Pattern Recognition},
  year      = {2024},
  pages     = {2910-2919},
  doi       = {10.1109/CVPR52733.2024.00281},
  url       = {https://mlanthology.org/cvpr/2024/ni2024cvpr-misalignmentrobust/}
}