Semantically-Shifted Incremental Adapter-Tuning Is a Continual ViTransformer

Abstract

Class-incremental learning (CIL) aims to enable models to continuously learn new classes while overcoming catastrophic forgetting. The introduction of pre-trained models has brought new tuning paradigms to CIL. In this paper we revisit different parameter-efficient tuning (PET) methods within the context of continual learning. We observe that adapter tuning demonstrates superiority over prompt-based methods even without parameter expansion in each learning session. Motivated by this we propose incrementally tuning the shared adapter without imposing parameter update constraints enhancing the learning capacity of the backbone. Additionally we employ feature sampling from stored prototypes to retrain a unified classifier further improving its performance. We estimate the semantic shift of old prototypes without access to past samples and update stored prototypes session by session. Our proposed method eliminates model expansion and avoids retaining any image samples. It surpasses previous pre-trained model-based CIL methods and demonstrates remarkable continual learning capabilities. Experimental results on five CIL benchmarks validate the effectiveness of our approach achieving state-of-the-art (SOTA) performance.

Cite

Text

Tan et al. "Semantically-Shifted Incremental Adapter-Tuning Is a Continual ViTransformer." Conference on Computer Vision and Pattern Recognition, 2024. doi:10.1109/CVPR52733.2024.02194

Markdown

[Tan et al. "Semantically-Shifted Incremental Adapter-Tuning Is a Continual ViTransformer." Conference on Computer Vision and Pattern Recognition, 2024.](https://mlanthology.org/cvpr/2024/tan2024cvpr-semanticallyshifted/) doi:10.1109/CVPR52733.2024.02194

BibTeX

@inproceedings{tan2024cvpr-semanticallyshifted,
  title     = {{Semantically-Shifted Incremental Adapter-Tuning Is a Continual ViTransformer}},
  author    = {Tan, Yuwen and Zhou, Qinhao and Xiang, Xiang and Wang, Ke and Wu, Yuchuan and Li, Yongbin},
  booktitle = {Conference on Computer Vision and Pattern Recognition},
  year      = {2024},
  pages     = {23252-23262},
  doi       = {10.1109/CVPR52733.2024.02194},
  url       = {https://mlanthology.org/cvpr/2024/tan2024cvpr-semanticallyshifted/}
}