Sparse Representations of Image Gradient Orientations for Visual Recognition and Tracking
Abstract
Recent results [18] have shown that sparse linear representations of a query object with respect to an overcomplete basis formed by the entire gallery of objects of interest can result in powerful image-based object recognition schemes. In this paper, we propose a framework for visual recognition and tracking based on sparse representations of image gradient orientations. We show that minimal ℓ1 solutions to problems formulated with gradient orientations can be used for fast and robust object recognition even for probe objects corrupted by outliers. These solutions are obtained without the need for solving the extended problem considered in [18]. We further show that low-dimensional embeddings generated from gradient orientations perform equally well even when probe objects are corrupted by outliers, which, in turn, results in huge computational savings. We demonstrate experimentally that, compared to the baseline method in [18], our formulation results in better recognition rates without the need for block processing and even with smaller number of training samples. Finally, based on our results, we also propose a robust and efficient ℓ1-based “tracking by detection” algorithm. We show experimentally that our tracker outperforms a recently proposed ℓ1-based tracking algorithm in terms of robustness, accuracy and speed.
Cite
Text
Tzimiropoulos et al. "Sparse Representations of Image Gradient Orientations for Visual Recognition and Tracking." IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2011. doi:10.1109/CVPRW.2011.5981809Markdown
[Tzimiropoulos et al. "Sparse Representations of Image Gradient Orientations for Visual Recognition and Tracking." IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2011.](https://mlanthology.org/cvprw/2011/tzimiropoulos2011cvprw-sparse/) doi:10.1109/CVPRW.2011.5981809BibTeX
@inproceedings{tzimiropoulos2011cvprw-sparse,
title = {{Sparse Representations of Image Gradient Orientations for Visual Recognition and Tracking}},
author = {Tzimiropoulos, Georgios and Zafeiriou, Stefanos and Pantic, Maja},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops},
year = {2011},
pages = {26-33},
doi = {10.1109/CVPRW.2011.5981809},
url = {https://mlanthology.org/cvprw/2011/tzimiropoulos2011cvprw-sparse/}
}