DeepSpace: Mood-Based Image Texture Generation for Virtual Reality from Music

Abstract

Affective virtual spaces are of interest for many VR applications in areas of wellbeing, art, education, and entertainment. Creating content for virtual environments is a laborious task involving multiple skills like 3D modeling, texturing, animation, lighting, and programming. One way to facilitate content creation is to automate sub-processes like assignment of textures and materials within virtual environments. To this end, we introduce the DeepSpace approach that automatically creates and applies image textures to objects in procedurally created 3D scenes. The main novelty of our DeepSpace approach is that it uses music to automatically create kaleidoscopic textures for virtual environments designed to elicit emotional responses in users. Specifically, DeepSpace exploits the modeling power of deep neural networks, which have shown great performance in image generation tasks, to achieve mood-based image generation. Our study results indicate the virtual environments created by DeepSpace elicit positive emotions and achieve high presence scores.

Cite

Text

Sra et al. "DeepSpace: Mood-Based Image Texture Generation for Virtual Reality from Music." IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2017. doi:10.1109/CVPRW.2017.283

Markdown

[Sra et al. "DeepSpace: Mood-Based Image Texture Generation for Virtual Reality from Music." IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2017.](https://mlanthology.org/cvprw/2017/sra2017cvprw-deepspace/) doi:10.1109/CVPRW.2017.283

BibTeX

@inproceedings{sra2017cvprw-deepspace,
  title     = {{DeepSpace: Mood-Based Image Texture Generation for Virtual Reality from Music}},
  author    = {Sra, Misha and Vijayaraghavan, Prashanth and Rudovic, Ognjen and Maes, Pattie and Roy, Deb},
  booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops},
  year      = {2017},
  pages     = {2289-2298},
  doi       = {10.1109/CVPRW.2017.283},
  url       = {https://mlanthology.org/cvprw/2017/sra2017cvprw-deepspace/}
}