MST++: Multi-Stage Spectral-Wise Transformer for Efficient Spectral Reconstruction
Abstract
Existing leading methods for spectral reconstruction (SR) focus on designing deeper or wider convolutional neural networks (CNNs) to learn the end-to-end mapping from the RGB image to its hyperspectral image (HSI). These CNN-based methods achieve impressive restoration performance while showing limitations in capturing the long-range dependencies and self-similarity prior. To cope with this problem, we propose a novel Transformer-based method, Multi-stage Spectral-wise Transformer (MST++), for efficient spectral reconstruction. In particular, we employ Spectral-wise Multi-head Self-attention (S-MSA) that is based on the HSI spatially sparse while spectrally self-similar nature to compose the basic unit, Spectral-wise Attention Block (SAB). Then SABs build up Single-stage Spectral-wise Transformer (SST) that exploits a U-shaped structure to extract multi-resolution contextual information. Finally, our MST++, cascaded by several SSTs, progressively improves the reconstruction quality from coarse to fine. Comprehensive experiments show that our MST++ significantly outperforms other state-of-the-art methods. In the NTIRE 2022 Spectral Reconstruction Challenge, our approach won the First place. Code and pre-trained models are publicly available at https://github.com/caiyuanhao1998/MST-plus-plus.
Cite
Text
Cai et al. "MST++: Multi-Stage Spectral-Wise Transformer for Efficient Spectral Reconstruction." IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2022. doi:10.1109/CVPRW56347.2022.00090Markdown
[Cai et al. "MST++: Multi-Stage Spectral-Wise Transformer for Efficient Spectral Reconstruction." IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2022.](https://mlanthology.org/cvprw/2022/cai2022cvprw-mst/) doi:10.1109/CVPRW56347.2022.00090BibTeX
@inproceedings{cai2022cvprw-mst,
title = {{MST++: Multi-Stage Spectral-Wise Transformer for Efficient Spectral Reconstruction}},
author = {Cai, Yuanhao and Lin, Jing and Lin, Zudi and Wang, Haoqian and Zhang, Yulun and Pfister, Hanspeter and Timofte, Radu and Van Gool, Luc},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops},
year = {2022},
pages = {744-754},
doi = {10.1109/CVPRW56347.2022.00090},
url = {https://mlanthology.org/cvprw/2022/cai2022cvprw-mst/}
}