NeuralAnnot: Neural Annotator for 3D Human Mesh Training Sets

Abstract

Most 3D human mesh regressors are fully supervised with 3D pseudo-GT human model parameters and weakly supervised with GT 2D/3D joint coordinates as the 3D pseudo-GTs bring great performance gain. The 3D pseudo-GTs are obtained by annotators, systems that iteratively fit 3D human model parameters to GT 2D/3D joint coordinates of training sets in the pre-processing stage of the regressors. The fitted 3D parameters at the last fitting iteration become the 3D pseudo-GTs, used to fully super-vise the regressors. Optimization-based annotators, such as SMPLify-X, have been widely used to obtain the 3D pseudo-GTs. However, they often produce wrong 3D pseudo-GTs as they fit the 3D parameters to GT of each sample independently. To overcome the limitation, we present NeuralAnnot, a neural network-based annotator. The main idea of NeuralAnnot is to employ a neural network-based regressor and dedicate it for the annotation. Assuming no 3D pseudo-GTs are available, NeuralAnnot is weakly supervised with GT 2D/3D joint coordinates of training sets. The testing results on the same training sets become 3D pseudo-GTs, used to fully supervise the regressors. We show that 3D pseudo-GTs of NeuralAnnot are highly beneficial to train the regressors. We made our 3D pseudo-GTs publicly available.

Cite

Text

Moon et al. "NeuralAnnot: Neural Annotator for 3D Human Mesh Training Sets." IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2022. doi:10.1109/CVPRW56347.2022.00256

Markdown

[Moon et al. "NeuralAnnot: Neural Annotator for 3D Human Mesh Training Sets." IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2022.](https://mlanthology.org/cvprw/2022/moon2022cvprw-neuralannot/) doi:10.1109/CVPRW56347.2022.00256

BibTeX

@inproceedings{moon2022cvprw-neuralannot,
  title     = {{NeuralAnnot: Neural Annotator for 3D Human Mesh Training Sets}},
  author    = {Moon, Gyeongsik and Choi, Hongsuk and Lee, Kyoung Mu},
  booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops},
  year      = {2022},
  pages     = {2298-2306},
  doi       = {10.1109/CVPRW56347.2022.00256},
  url       = {https://mlanthology.org/cvprw/2022/moon2022cvprw-neuralannot/}
}