CheckSORT: Refined Synthetic Data Combination and Optimized SORT for Automatic Retail Checkout

Abstract

In this paper, we propose a method called CheckSORT for automatic retail checkout. We demonstrate CheckSORT on the multi-class product counting and recognition task in Track 4 of AI CITY CHALLENGE 2023. This task aims to count and identify products as they move along a retail checkout white tray, which is challenging due to occlusion, similar appearance, or blur. Based on the constraints and training data provided by the sponsor, we propose two new ideas to solve this task. The first idea is to design a controllable synthetic training data generation paradigm to bridge the gap between training data and real test videos as much as possible. The second innovation is to improve the efficiency of existing SORT tracking algorithms by proposing decomposed Kalman filter and dynamic tracklet feature sequence. Our experiments resulted in state-of-the-art (when compared with DeepSORT and StrongSORT) F1-scores of 70.3% and 62.1% on the TestA data of AI CITY CHALLENGE 2022 and 2023 respectively in the estimation of the time (in seconds) for the product to appear on the tray. Training and testing code will be available soon on github.

Cite

Text

Shi et al. "CheckSORT: Refined Synthetic Data Combination and Optimized SORT for Automatic Retail Checkout." IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2023. doi:10.1109/CVPRW59228.2023.00569

Markdown

[Shi et al. "CheckSORT: Refined Synthetic Data Combination and Optimized SORT for Automatic Retail Checkout." IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2023.](https://mlanthology.org/cvprw/2023/shi2023cvprw-checksort/) doi:10.1109/CVPRW59228.2023.00569

BibTeX

@inproceedings{shi2023cvprw-checksort,
  title     = {{CheckSORT: Refined Synthetic Data Combination and Optimized SORT for Automatic Retail Checkout}},
  author    = {Shi, Ziqiang and Liu, Zhongling and Liu, Liu and Liu, Rujie and Yamamoto, Takuma and Mi, Xiaoyu and Uchida, Daisuke},
  booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops},
  year      = {2023},
  pages     = {5391-5398},
  doi       = {10.1109/CVPRW59228.2023.00569},
  url       = {https://mlanthology.org/cvprw/2023/shi2023cvprw-checksort/}
}