A QCQP Approach to Triangulation

Abstract

Triangulation of a three-dimensional point from n≥2 two-dimensional images can be formulated as a quadratically constrained quadratic program. We propose an algorithm to extract candidate solutions to this problem from its semidefinite programming relaxations. We then describe a sufficient condition and a polynomial time test for certifying when such a solution is optimal. This test has no false positives. Experiments indicate that false negatives are rare, and the algorithm has excellent performance in practice. We explain this phenomenon in terms of the geometry of the triangulation problem.

Cite

Text

Aholt et al. "A QCQP Approach to Triangulation." European Conference on Computer Vision, 2012. doi:10.1007/978-3-642-33718-5_47

Markdown

[Aholt et al. "A QCQP Approach to Triangulation." European Conference on Computer Vision, 2012.](https://mlanthology.org/eccv/2012/aholt2012eccv-qcqp/) doi:10.1007/978-3-642-33718-5_47

BibTeX

@inproceedings{aholt2012eccv-qcqp,
  title     = {{A QCQP Approach to Triangulation}},
  author    = {Aholt, Chris and Agarwal, Sameer and Thomas, Rekha R.},
  booktitle = {European Conference on Computer Vision},
  year      = {2012},
  pages     = {654-667},
  doi       = {10.1007/978-3-642-33718-5_47},
  url       = {https://mlanthology.org/eccv/2012/aholt2012eccv-qcqp/}
}