VSO: Visual Semantic Odometry
Abstract
Robust data association is a core problem of visual odometry, where image-to-image correspondences provide constraints for camera pose and map estimation. Current state-of-the-art direct and indirect methods use short-term tracking to obtain continuous frame-to-frame constraints, while long-term constraints are established using loop closures. In this paper, we propose a novel visual semantic odometry (VSO) framework to enable medium-term continuous tracking of points using semantics. Our proposed framework can be easily integrated into existing direct and indirect visual odometry pipelines. Experiments on challenging real-world datasets demonstrate a significant improvement over state-of-the-art baselines in the context of autonomous driving simply by integrating our semantic constraints.
Cite
Text
Lianos et al. "VSO: Visual Semantic Odometry." Proceedings of the European Conference on Computer Vision (ECCV), 2018. doi:10.1007/978-3-030-01225-0_15Markdown
[Lianos et al. "VSO: Visual Semantic Odometry." Proceedings of the European Conference on Computer Vision (ECCV), 2018.](https://mlanthology.org/eccv/2018/lianos2018eccv-vso/) doi:10.1007/978-3-030-01225-0_15BibTeX
@inproceedings{lianos2018eccv-vso,
title = {{VSO: Visual Semantic Odometry}},
author = {Lianos, Konstantinos-Nektarios and Schonberger, Johannes L. and Pollefeys, Marc and Sattler, Torsten},
booktitle = {Proceedings of the European Conference on Computer Vision (ECCV)},
year = {2018},
doi = {10.1007/978-3-030-01225-0_15},
url = {https://mlanthology.org/eccv/2018/lianos2018eccv-vso/}
}