TF-NAS: Rethinking Three Search Freedoms of Latency-Constrained Differentiable Neural Architecture Search

Abstract

With the flourish of differentiable neural architecture search (NAS), automatically searching latency-constrained architectures gives a new perspective to reduce human labor and expertise. However, the searched architectures are usually suboptimal in accuracy and may have large jitters around the target latency. In this paper, we rethink three freedoms of differentiable NAS, i.e. operation-level, depth-level and width-level, and propose a novel method, named Three-Freedom NAS (TF-NAS), to achieve both good classification accuracy and precise latency constraint. For the operation-level, we present a bi-sampling search algorithm to moderate the operation collapse. For the depth-level, we introduce a sink-connecting search space to ensure the mutual exclusion between skip and other candidate operations, as well as eliminate the architecture redundancy. For the width-level, we propose an elasticity-scaling strategy that achieves precise latency constraint in a progressively fine-grained manner. Experiments on ImageNet demonstrate the effectiveness of TF-NAS. Particularly, our searched TF-NAS-A obtains 76.9% top-1 accuracy, achieving state-of-the-art results with less latency. Code is available at https://github.com/AberHu/TF-NAS.

Cite

Text

Hu et al. "TF-NAS: Rethinking Three Search Freedoms of Latency-Constrained Differentiable Neural Architecture Search." Proceedings of the European Conference on Computer Vision (ECCV), 2020. doi:10.1007/978-3-030-58555-6_8

Markdown

[Hu et al. "TF-NAS: Rethinking Three Search Freedoms of Latency-Constrained Differentiable Neural Architecture Search." Proceedings of the European Conference on Computer Vision (ECCV), 2020.](https://mlanthology.org/eccv/2020/hu2020eccv-tfnas/) doi:10.1007/978-3-030-58555-6_8

BibTeX

@inproceedings{hu2020eccv-tfnas,
  title     = {{TF-NAS: Rethinking Three Search Freedoms of Latency-Constrained Differentiable Neural Architecture Search}},
  author    = {Hu, Yibo and Wu, Xiang and He, Ran},
  booktitle = {Proceedings of the European Conference on Computer Vision (ECCV)},
  year      = {2020},
  doi       = {10.1007/978-3-030-58555-6_8},
  url       = {https://mlanthology.org/eccv/2020/hu2020eccv-tfnas/}
}